
AFIT/GCE/ENG/93D-03

AD-A27 4 075

DTIC
S ELECT E

DEC, 7 1993

A

VULNERABILITY ASSESSMENT

USING A FUZZY LOGIC BASED METHOD

THESIS

Richard W. Fleming, Captain, USAF

AFIT/GCE/ENG/93D-03

Thu do-:_rr r2c5. 6e appioved
for piblic r-le•-ce and sole; its
distzibution is

93-31036

Approved for public release; distribution unlimited

93 12 22 149

The views expressed in this thesis are those of the author and do not reflect official policy or

position of the Departrent of Defense or the U.S. Government.

c c, -, . 3 I

U

By........ 1

ist

QUAL n D '

AFIT/GCE/ENG/93D-03

VULNERABILITY ASSESSMENT

USING A FUZZY LOGIC BASED METHOD

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

Richard W. Fleming, B.S.

Captain, USAF

December 1993

Approved for public release; distribution unlimited

Preface

The purpose of this thesis is to demonstrate the feasibility of using a qualitative analysis method to

assess and evaluate computer security vulnerabilities. The primary motivation for this research is

to assist the United States Air Force (USAF) in assessing and eliminating the vulnerabilities

identified in USAF computer systems. Although the main focus of this thesis is to evaluate

computer security vulnerabilities, the methods involved have application in other areas requiring

evaluation using qualitative methods.

This thesis puts head-to-head a quantitative approach to analysis and a qualitative

approach utilizing linguistic variables. Linguistic variables are represented using a calculus

described by Lofti Zadeh (Zadeh65:338). Linguistic variables are terms such as Low, Medium,

and High. In the realm of vulnerability analysis, these have a definite semantic meaning. It is

proposed, and demonstrated by this thesis, that the use of qualitative analysis using linguistic

variables to describe the impact of computer security vulnerabilities is not only feasible, but

intrinsically easier to understand and use than quantitative methods.

In developing the necessary computer programs and writing this thesis, I have had a great

deal of help from others. I am most indebted to my faculty advisor, Major Gregg Gunsch. His

consistent support and guidance was always felt and much appreciated in the many times of need

and confusion. I wish to thank Drs. Henry Potoczny and Eugene Santos for serving on my thesis

committee. I also wish to acknowledge the Air Force Cryptological Support Center (AFCSC) for

their generous sponsorship of this work.

Finally, I wish to thank my wife, Kim, and my children, Dakin and Mandi, for their never-

ending support, concern, and love as I spent the many days and nights sequestered in my office

with this work.

Richard W. Fleming

ii

Table of Contents

Page
Preface .. ii

List of Figures .. vi

List of Tables .. vi

Abstract .. vii

I Introduction .. 1
1.1 General Issue ... 1
1.2 Background ... 1
1.3 W hat are Risk and Vulnerability Analysis? 4
1.4 M otivation .. 5
1.5 Hypothesis .. 5
1.6 Research Objectives ... 6
1.7 Scope .. 6
1.8 Document Structure .. 6
1.9 Summ ary ... 7

U Historical Development .. 8
2.1 Introduction ... 8
2.2 Overview of Problem ... 9
2.3 Reasoning with Uncertainty ... 10

2.3.1 Introduction of Al M ethods ... 10
2.3.2 Bayes' Theorem ... 10
2.3.3 Bayesian Networks ... 12
2.3.4 Dempster-Shafer .. 13
2.3.5 Fuzzy Set Theory .. 14

2.4 Analysis M ethods .. 17
2.4.1 Introduction .. 17
2.4.2 Quantitative Analysis .. 19
2.4.3 Qualitative Analysis .. 21

2.5 Organization of Vulnerability Inform ation .. 22
2.6 Current Air Force Analysis Tools .. 23
2.7 Automating Computer Security Analysis .. 24
2.8 Summ ary ... 26

Ill M ethodology .. 27
3.1 Introduction ... 27

I!1i.

3.2 Overview ... 27
3.3 Background ... 29
3.4 Statistical Analysis ... 29
3.5 Fuzzy Logic ... 31

3.5 Schm ucker's Calculation M ethod ... 32
3.5.1.1 Translation of Fuzzy Set to Linguistic Term 35
3.5.1.2 Normalization and Convexity of Fuzzy Sets 36

3.5.2 Table Lookup M ethod ... 37
3.5.3 Fuzzy Arithmetic .. 39

3.6 Scalability ... 44
3.7 Sam ple Data Generation .. 44
3.8 Summ ary ... 45

IV Implementation ... 47
4.1 Introduction ... 47
4.2 Quantitative M ethod using Statistical Analysis .. 47
4.3 Qualitative M ethod using Fuzzy Logic .. 49

4.3.1 Fuzzy M ath .. 49
4.4 Summ ary ... 50

V Results ... 52
5.1 Introduction ... 52
5.2 Hypothesis (restated) ... 52
5.3 Effectiveness ... 53

5.3.1 Ability to Categorize Vulnerabilities .. 53
5.3.1.1 Accuracy ... 53
5.3.1.2 Precision .. 54
5.3.1.3 Generation of Distinctions .. 56
5.3.1.4 Evaluation of Cose Results .. 57

5.3.2 Ease of Use .. 58
5.3.2.1 Interpretation of Data .. 58

5.4 Efficiency .. 61
5.4.1 Timed Performance .. 61
5.4.2 Scalability ... 61

5.5 Summary ... 61

VI Conclusions and Recomm endations .. 63
6.1 Conclusions ... 63
6.2 Project Recomm endations .. 63
6.3 Future Enhancements and Phases .. 63

Appendix A : Computer Program s .. 66
A- 1 Quantitative Method using Statistical Analysis .. 66
A-2 Qualitative Method using Fuzzy Analysis (Table Lookup) 70

iv

Appendix B: Sample Program Output .. 75
B-I Program Output - Numeric Method (50 Samples) 75
B-2 Program Output - Fuzzy Method (50 Samples) .. 81

Bibliography ... 88

VITA .. 91

v

List of Figures

Figure Page

1. Fuzzy Sets Describing Height ... 15

2. Loss Unit Concept ... 19

3. Defined Fuzzy Sets .. 39

4. Positive Increasing Fuzzy Sets .. 42

5. M edian Based Fuzzy Sets ... 42

6. Relative M agnitude Fuzzy Sets ... 44

7. Lisp Object with Num erical Data ... 46

8. Lisp Object with Fuzzy Data ... 46

9. CLOS Object Structure ... 48

10. Clustering of Audit Functional Area (Quantitative) .. 54

11. Clustering of Audit Functional Area (Qualitative) .. 54

12. Tim ed perform ance (Num erical vs. Fuzzy) .. 62

List of Tables

Table Page

1. Addition of Fuzzy Sets (Linear M apping) .. 51

2. M ultiplication of Fuzzy Sets (Linear M apping) ... 51

3. Timed perform ance (Numerical vs. Fuzzy) ... 62

vi

AFIT/GCE/ENG/93D-03

Abstract

This thesis demonstrates the feasibility of using qualitative analysis methods to evaluate

computer security vulnerabilities. Although many risk analysis systems exist, few provide for the

adequate analysis of identified vulnerabilities. While the main focus of this thesis is to evaluate

computer security vulnerabilities, the methods involved have application in other areas requiring

evaluation using qualitative methods.

It is proposed, and demonstrated by this thesis, that the use of qualitative analysis using

linguistic variables to describe the impact of computer security vulnerabilities is not only feasible,

but intrinsically easier to understand and use than quantitative methods.

vii

VULNERABILITY ANALYSIS

USING A FUZZY LOGIC BASED METHOD

I Introduction

1.1 General Issue

This thesis describes, develops, and compares automated analysis methods providing

support capabilities to security analysts in the evaluation of computer security vulnerabilities.

1.2 Background

Computer security is a major Air Force concern. Air Force agencies and organizations use

computers in almost every aspect of their operations. To maintain even minimal operational

capability, organizations must increase their dependence on these machines. Associated with this

increased dependence is an increase in associated costs, both tangible and intangible, resulting from

compromised computer resources. Compromised resources occur as the result of vulnerabilities

being exploited. These vulnerabilities include, but are not limited to, unauthorized access,

sabotage, physical damage, and accidental misuse.

To ensure the protection of computer resources, the USAF implemented AFR 205-16,

Security: Computer Security Policy. The purpose of this regulation is to ". . protect the

confidentiality, integrity, and availability of information processed on all Air Force computer

systems" (DAF89:1). Air Force Systems Security Instruction (AFSSI) 5100, The Air Force

COMPUSEC Prog[m and AFSSI 5102, Computer Security for Operational Systems later

1

supplemented AFR 205-16. AFSSI 5102 requires each facility processing information for the

USAF to perform a security risk analysis on each installed computer. This requirement includes

both government- and contractor-owned facilities (DAF93b:2). This requirement to perform a

security risk analysis applies not only to Air Force systems, but as directed by the Office of

Management and Budget of the United States Circular Number A-71, to ". . . every federal

department or agency operating one or more computer installations.. ." (Carroll84:2)

Risk analysis identifies threats and vulnerabilities associated with a given computer system

and determines if the safeguards in effect adequately protect the system from compromise. After

eliminating the risk, or reducing the risk to acceptable levels, the computer security officer (CSO)

authorizes the computer system to be operated at a maximum sensitivity level and for a certain

mission. Any change to the computer system, whether hardware, software, or mission, mandates

performing another risk analysis.

When the Air Force established AFR 205-16, most of the computers in the Air Force were

large single-site mainframes. Although very complicated and large systems, the configuration and

intended usage of these mainframes did not change often. CSOs could manage the required

number of risk analyses manually. With the advent of personal computers and desktop

workstations, the required number of analyses became too difficult to manage. AFCSC, located at

Kelly AFB, TX, developed the Automated Risk Evaluation System (ARES) to address this

management problem.

ARES is a computer program that assists computer security personnel in performing a risk

analysis. The computer program guides the user through a myriad of questions pertaining to all

aspects of computer security. After the user answers all of the pertinent questions, ARES

generates a series of reports identifying the possible vulnerabilities associated with a particular

computer system.

2

The listing of identified vulnerabilities generated by ARES does not provide any indication

as to the importance of each vulnerability. The CSO must still evaluate the importance of each

vulnerability. The manual process of evaluating computer security vulnerabilities is very labor

intensive. To help ease this workload, this thesis presents two automated methods possibly useful

in the evaluation of computer security vulnerabilities.

At this point, I need to stress a few items. First, regardless of the method used the

evaluation of vulnerabilities by a CSO is subjective. Security analysis is not an absolute and the

degree of importance assigned to a vulnerability may differ from CSO to CSO.

Second, the evaluation of vulnerabilities is context sensitive with regard to location,

hardware, software, and mission requirements. This implies that one site might identify a

vulnerability as trivial while another site might identify the same vulnerability as critical. Lack of

backup power is an example of a context sensitive vulnerability. Not having backup power for an

air traffic control system would probably be critical while not having backup power for electronic

message system might be trivial. Even in this example, the use of the system is context sensitive.

If the air traffic control system is for a small airport and the airport only uses the system as a

secondary method of air traffic control, the system may not be critical to flight operations, hence,

the system may not require backup power. Likewise, the vulnerability of not having backup power

is critical if world leaders use the electronic message system for communication. This implies that

the automated method must allow for each CSO to tailor the importance of vulnerabilities to meet

site specific requirements.

Last, and most important, is that there is no proven and demonstrable "industry standard"

method for analyzing computer security vulnerabilities. As such, the methods discussed and

developed in this thesis cannot be proven to be any better or worse than any other method. This

thesis does demonstrate that the methods presented have merit with regard to their ability to

3

analyze computer security vulnerabilities. Their applicability to a specific computer site is subject

to that site's requirements and existing analysis techniques.

1.3 What are Risk and Vulnerability Analysis?

Before continuing, iu is essential to define the differences between risk and vulnerability

analysis. Risk is defined as "the possibility of loss" (Carrol184:xv) while vulnerability is defined as

"a weakness or lack of controls that would allow or facilitate a threat actuation against a specific

asset or target" (Podel186:88). How these terms differ is best demonstrated by an example. The

computer system is identified as not having a password capability. This is a vulnerability. The

loss or compromise of data because the system doesn't have a password capability is a risk. In

other words, risks are caused by a vulnerability being exploited.

A key component of any risk analysis is vulnerability identification and analysis

(Carroll84:137). Vulnerability analysis is the evaluation of identified vulnerabilities to determine

the importance or impact of each vulnerability with respect to all other identified vulnerabilities.

The importance or impact is usually with regard to confidentiality, availability, and integrity of the

system. In vulnerability analysis, countermeasures are not considered and no evaluation is

performed with regard to expected loss (Carroll84:90). In other words, the end product of a

vulnerability analysis is the categorization and clustering of vulnerabilities by importance or

impact.

Risk analysis is the "analysis of system assets and vulnerabilities to determine the

system's exposure or expected loss" (Podel186:84). In order to perform an effective risk analysis, a

complete vulnerability analysis must be performed. The categorization of the vulnerabilities

performed by the vulnerability analysis and the cost information associated with each vulnerability

4

being exploited are combined and analyzed in a risk analysis. The final product of the risk analysis

indicates which clustering of vulnerabilities and cost provide the greatest exposure or expected

loss. Risk can only be effectively analyzed if all vulnerabilities are identified and evaluated.

1.4 Motivation

The primary motivation for this research is a need to automate and standardize computer

vulnerability analysis. A secondary motivation arose as a result of discussions with the managers

of ARES. As with any on-going software project, ARES is under constant modification and

revision. One of the revisions planned for ARES is the incorporation of a risk analysis

methodology. As proposed by the developers and maintainers of ARES, this risk analysis

methodology would use a quantitative analysis approach (Trident93:8). To ensure the best product

is fielded, I proposed to the managers of ARES that a qualitative analysis approach might be more

intuitive for the end-user to understand and utilize, while still maintaining the effectiveness and

efficiency of a quantitative method.

This research is the first phase of a multi-phase research project. This thesis specifically

addresses the feasibility of using a qualitative versus quantitative analysis method to evaluate

identified vulnerabilities. Future phases outlined in chapter 6 will address other risk analysis

capabilities and implementation details.

1.5 Hypothesis

The hypothesis of this thesis is stated in two parts: that a qualitative analysis approach to

vulnerability analysis is as effective and efficient as a quantitative approach and that the qualitative

5

approach provides the security analyst with intuitive information not readily available in

quantitative approaches. Effectiveness is measured as the ability to provide reasonable

categorizations of identified vulnerabilities based on importance or impact. Efficiency is measured

with regard to processing time and scalability of the method.

1.6 Research Objectves

This thesis has two objectives. First, to identify and develop automated methods that

provide a consistent evaluation of vulnerabilities. Second, to evaluate each method for

effectiveness and efficiency.

1.7 Scope

The scope of this thesis is limited to identifying, developing, and evaluating two methods capable

of evaluating computer security vulnerabilities. The vulnerabilities used as test data in this thesis

are a subset of the possible vulnerabilities generated by ARES.

1.8 Document Structure

This thesis contains six chapters and two appendices. The motivation and background for

this research is provided in this, the first chapter. Also provided in this chapter are the research

objectives. The second chapter provides an overview and discussion of vulnerability analysis

methods and various automated analysis methods. The third chapter discusses the methodologies

used in this thesis and the justification for using those methods. In the fourth chapter, the details of

6

how the methodologies were implemented are provided. The fifth chapter presents the results of

this research, and the conclusions and recommendations are provided in the sixth chapter.

The first appendix contains a high level overview of the Lisp program code implemented

for each of the methods. The second appendix contains sample output generated from two of the

implemented methods. Each of the sample runs was genererated using the same sample of 50

vulnerabilities. The complete source code and sample data files can be obtained by contacting:

Major Gregg Gunsch (AI Lab)
AFIT / ENG
2950 P Street
Wright-Patterson AFB, OH 45433-7765
ggunsch@afit.af.mil

1.9 Summary

There is a need to automate the analysis of identified computer security vulnerabilities.

The Air Force developed ARES, a system capable of identifying vulnerabilities, but not providing

any analysis capabilities. Two general categories of analysis methods, quantitative and qualitative,

can be used to perform vulnerability analysis. In the field of vulnerability analysis, there is

currently no accepted standard method. This thesis hypothesizes that the qualitative methods are

comparably effective and efficient in performing this analysis and provide intuitive information to

the analyst as compared to quantitative methods. To support this hypothesis, both a numeric and

non-numeric analysis method were developed and implemented.

7

II Historical Development

2.1 Introduction

Beginning with the first ENIAC computer used by the War Department during World War

II, there has been a need to ensure the security of computing resources. Since the first computers

were very large in size and all components located in one facility, physical security of the system

was adequate to protect the resources. With the advent of multi-user systems came the need to

incorporate protection mechanisms into the computer's operating system. These protection

schemes continued to evolve to encompass aspects of physical, data, user, and environmental

security.

As computers and their associated operating environments became increasingly complex, it

became proportionally difficult to protect these resources. To assist the security managers in

analyzing the risk to their computing resources, several analysis methods were devised. These

methods involve using some form of reasoning with uncertainty to assist in the risk analysis.

Reasoning with uncertainty is an essential part of performing risk analysis. If the CSO

could eliminate all of the uncertainty in computer security, he could simply look up in a table what

safeguard to put in place for each vulnerability. However, all of the uncertainty cannot be

eliminated. The introduction of new computer technology introduces new risks. With these new

risks come new uncertainties and changes in existing uncertainties. Also, as the dependence on

ccumplter technology increases, so do the associated costs of these new risks. Because of these

ever changing conditions, the analysis method used by the CSO must have the ability to reason

with uncertainty.

8

2.2 Overview of Problem

There are two basic problems with evaluating computer security vulnerabilities. The first

is determining what aspects of computer security vulnerabilities to evaluate. This involves

establishing the functional areas that each vulnerability affects. For instance, user IDs affect

access control and operating system capabilities. The second problem is then determining how to

evaluate the vulnerabilities affecting each functional area in order to provide an overall

vulnerability rating for each functional area.

For the purpose of this thesis, I defined seven functional areas that each vulnerability can

affect. These are audit capabilities, recovery capabilities, access control magnetic media

control, operating system capabilities, configuration control, and documentation. Each

vulnerability may affect more than one of these functional areas. These seven areas could be

further divided in more detailed areas and probably should be in a fielded implementation. For

instance, access control could be further divided into hardware protection (e.g., call-back

modems) and software protection (e.g., password) control schemes. For the purposes of this thesis,

however, I will only demonstrate the capability of the methods to handle these seven functional

areas. Each method tested will use the same seven functional areas and vulnerabilities to generate

a vulnerability rating for each functional area.

A large problem faced in this thesis was deciding how to evaluate the functional areas and

the vulnerabilities affecti-g etach area. My problem arose from deciding which method best

reasons with uncertainty. Giarratano and Riley define uncertainty as "... the lack of adequate

information to make a decision." (Giarrati ,89:185). Uncertainty comes from several sources.

First, uncertainty occurs when some or all of the data is unobtainable or missing. Unobtainable

9

implies the data is not available from any source. Second, uncertainty arises when the expert

provides inexact or inconsistent information. Third, uncertainty comes from data that is available,

but contains errors (Giarratano89:186-190,221). Last, I would add that uncertainty includes

information difficult to quantify such as loss of life or delay in mission.

2.3 Reasoning with Uncertainty

2.3.1 Introduction of Al Methods. As stated earlier, a problem faced in this thesis

was deciding which method best performs reasoning with uncertainty. The sciences of Artificial

Intelligence (AI) and probability theory have much to offer towards helping solve this problem.

Discussed below are several approaches to reasoning with uncertainty. These approaches are by

no means the only methods available, but they are representative of the varied 'schools of thought'

concerning how to reason with uncertain information. Other methods include Intuitionistic Logic

(Martin-Loff2), Multiple Valued Logic (Lukasiewicz67), Variable Value Logic (Michalski75),

Variable Precision Logic (Michalski86), Default Logic (Reiter80, Yager87), Temporal Logic

(McDermott82), and Decision Trees (Quinlan82) to name a few (Dontas87:2).

2.3.2 Bayes' Theorem. The most well known method to deal with uncertainties is

Bayes' Theorem (Rich9l:231, Giarratano89:204, Bacchus90:67). This theorem, shown in

Equation (1), forms the basis for conditional probability theory and allows for calculating the

inverse or a posteriori probability. If the probability of event A occurring given event B, P(AIB),

is known and the probability of event B occurring unconditionally, P(B), is known, Bayes'

Theorem allows the calculation of the probability of event B given event A, P(BIA). P(AIB) and

P(B) are a priori and must be known prior to solving for P(BIA), the a posteriori probability.

10

Bayes' Theorem has one advantage over all of the other methods to be discussed. Bayes'

Theorem produces a precise and mathematically provable solution if we know these a priori

probabilities. Bayes' Theorem has several large drawbacks that make it unfeasible to use. It

should be noted that Bayes' Theorem is relatively easy to implement and is theoretically easy to

understand, but for most real world problems is very difficult to use. First, in order to calculate the

a posteriori probability, two a priori probabilities, P(AJBi) and P(Bi), have to be known. For

many real world problems, knowing or obtaining these probabilities is difficult, if not impossible

(Rich9l:233, Dillard9l:l). Second, if the problem deals with dependent events, and thus joint

probabilities, Bayes' Theorem grows exponentially and becomes computationally intractable

(Rich9l:233).

= P(AIB,).P(B,)

where: P(BiIA) = the a posteriori probability that event Bi occurs given event A occurs
P(AlBi) = the a priori probability we will observe event A given event Bi occurs
P(Bi) = the a priori probability event Bi will occur independent of any other event
k = the number of possible events

(Rich9l:232)

As elegant and simple as Bayes' Theorem is to understand and implement, its drawbacks

prevent it from being applicable to the vulnerability analysis problem. Its inapplicability arises

from the varying number of vulnerabilities to be evaluated and the unavailability of a complete set

of a priori probabilities. It could be argued that the missing probabilities could simply be

generated by the expert based on experience. Even with a complete set of a priori probabilities,

the implementation still could not overcome the exponential performance characteristics of the

theorem.

11

2.3.3 Bayesian Networks. A variation on the pure Bayes' Theorem is Bayesian

Networks. This alternative, developed by Judea Pearl (Pearl88), uses a network structure to model

the problem. Pearl hypothesized that instead of representing the problem as one large joint

probability distribution as required by Bayes' Theorem, the problem could be broken up into a

network of individual nodes. Each node is probabilistically independent of all the other nodes and

therefore would not suffer from the exponential growth of a standard Bayes' Theorem approach.

Those events that are dependent and therefore must be 'processed' together are represented together

within a single node (Rich9l:239, Oliver9O:387).

Although minimizing the combinatorial effects of a pure Bayes' Theorem solution,

Bayesian Networks still require the same a priori probabilities. Because of a lack of available

data on the probabilities that a particular vulnerability will be exploited, this method is also not

directly applicable to the problem of vulnerability analysis. Another reason this method is not

applicable deals with the generation of the network. This network, which shows all of the

dependent relations and probabilities, would have to be encoded with all of the possible

vulnerabilities. As mentioned earlier, new technology is creating new vulnerabilities. If the

Bayesian Network approach was used, it would require rebuilding at least a portion of the network

structure each time a new vulnerability was identified or removed (Oliver9O:387). Depending on

the structure of the network, the changes may only have to be made to a single node. Changes in

vulnerabilities cannot simply be spliced into or out of the existing network. There are several

update methods that can be applied to making these changes, but if there are any intersecting nodes

in the network, all of the update methods suffer from combinatorial problems (Oliver9O:388). The

existing network is built based on the dependencies of the known vulnerabilities. If changes are

made to the network, they may have a propagation effect upon the existing dependencies with the

net result being a complete rebuilding of the network.

12

2.3.4 Dempster.Shafer. Another methodology using probabilities is Dempster-Shafer

theory (Dempster67, Shafer76, Giarratano89:275). Unlike Bayes' Theorem, where each event is

treated individually, Dempster-Shafer works with sets of events. These sets of events are mutually

exclusive and for each set of events a probability density function, m, is defined. In actuality, the

probability density function is defined not only for the set of events, but for all subsets as well. If

there are n events, there are 2 n subsets of events. According to Rich and Knight, many of these

subsets of events are insignificant to the problem and their probability density functions return

values of zero (Rich91:243).

The significance of this is that all of the combinations of vulnerabilities can be represented

as sets of vulnerabilities. Some, if not most, of the subsets of vulnerability combinations would be

impossible in the real world so the probability density function would return a value of zero.

Dempster-Shafer theory introduces the concepts of belief and plausibility. Belief is

defined as the minimum support provided by the evidence while plausibility is the maximum

support the evidence may be able to provide to the set of events (Giarratano89:284). Another

concept introduced by Dempster-Shafer theory is ignorance. This concept allows for asserting a

fact with a known confidence, but does not imply that the uncertainty of the fact is one minus the

known confidence since there may be some confidence in the falsehood of an event occurring. In

Dempster-Shafer theory, the probability density function can describe three aspects of a set of

hypotheses. The first is the belief the set of hypotheses is true, the second that the set is not true,

and the third probability distribution represents ignorance (Giarratano89:280).

A simple example of applying Dempster-Shafer would be to poll responses. If 100 people

were polled on whether a law should be passed, some responses would be yes, some no, and some

unknown or undecided. For discussion's sake, assume there were 40 yes responses, 35 no

responses, and 25 undecided. Dempster-Shafer could make the following assertions. There is

13

belief that 40% of the respondents support passing of the law, but it is plausible that 65% of the

respondents will support passing. There is also belief that 35% of the respondents support not

passing the law, but it is plausible that 60% of the respondents will not support the passing of the

law. There is also ignorance about 25% of the respondent's position. At some later point, the

respondents with the unknown answers could commit to yes or no and then their beliefs could be

attributed to the law passing or not passing respectively. Until such time though, there remains

some ignorance about their responses.

A major problem with Dempster-Shafer is the generation of the probability density

functions. Dempster-Shafer also requires a significant amount of a priori information (i.e.,

generation of the probability density functions), which if not supported with known probabilities,

would have to be estimated.

2.3.5 Fuzzy Set Theory. The last approach discussed is fuzzy set theory (Zadeh65,

Zadeh92). Fuzzy set theory, also known as fuzzy logic, is a generalization of normal set theory

(Schmucker84:5). Normal set theory defines the membership of an element in a set as a Boolean

predicate (i.e., yes or no). Fuzzy set theory represents the membership of a value in a given set as

a possibility distribution (i.e., low to high) (Rich9l:246). This variation allows definition of a set

to represent an abstract concept such as tall.

In a normal set, a discrete element is defined for each height we wish to represent. This

discreteness presents a problem if the question, "Is John tall?" is posed to the system. In normal set

theory, it is very difficult, if not impossible, to adequately represent the concept tall. In fuzzy set

theory, John has a membership value associated with the set TALL. John will also have a

membership value associated with the sets MEDIUM and SHORT where TALL, MEDIUM, and

SHORT all describe the height characteristics of people. TALL, MEDIUM, and SHORT are not

necessarily disjoint sets and may overlap as shown in Figure 1. Depending on the definition of the

14

set characteristics, a person may have equal membership in multiple sets. For instance, using the

sets defined in Figure 1, a person who is 5.75 feet tall would have the same membership value in

the sets MEDIUM and TALL.

Continuing with the example of John's height, there is another difference between Boolean

and fuzzy set theories. If John's height is five feet eleven inches, and in our Boolean system tall has

been defined to be those persons six feet and over, again pose the question "Is John tall?" to the

system. The Boolean system would reply no, although most human observers would tend to

categorize John as tall. In the fuzzy logic system, John's membership in the set TALL is defined as

something less that 1.0, but much greater than 0.0; probably around 0.99. The same question

posed to a fuzzy logic system should reply that John is a member of the set TALL with a

membership value of 0.99. John does not fully belong to the set TALL, but TALL would be a

fairly accurate linguistic term to describe John's height.

M 0.81 "

b 0.6 / "' \ -4- SHORT
e MEDIUM

s I4TALLI

p 0
<=4 4.5 5 5.5 6 6.5 >=7

Height in Feet

Figure 1. Fuzzy Sets Describing Height.

15

What these two examples demnonstrate are the basic concepts exemplified by fuzzy set

theory: the concepts of partial membership within a single set and membership in multiple sets

describing the same attribute. What these concepts provide is a fairly easy and intuitive method to

describe uncertain information.

Fuzzy set theory also allows modifiers such as very, somewhat, and slightly

(Negoita85:75). These modifiers can be defined to have the properties of concentrating, dilating,

or shifting the primary fuzzy set definition. These modifiers allow for a more detailed

discrimination of the members of a primary fuzzy set.

As pointed out earlier, fuzzy set theory is a generalization of normal set theory. As such,

normal sets can be modeled using fuzzy set theory. This allows for the use of precise set

definitions for those data items that are precisely defined and fuzzy set definitions for those data

items that are ill-defined. An example would be the sets MALE and FEMALE. Most people

would agree that these sets are precisely defined, genetic abnormalities aside, and as such

constitute Boolean sets. In fuzzy set theory is it perfectly acceptable to pose the question, "Is John

male and tall?".

Fuzzy set theory is not without its faults. Depending on how the set combination functions

such as union and intersection are implemented, the internal representations of the results can

suffer the same combinatorial explosion problems as the aforementioned methods. There are

implementations, such as the table lookup method presented later in this thesis, which eliminate the

combinatorial problems.

Fuzzy set theory, as applied to vulnerability analysis, still requires the a priori definition

of the probability, or likelihood in fuzzy set terms, that the vulnerabilities will occur. The primary

difference with assigning these likelihoods in fuzzy set theory is the use of linguistic terms. The

other methods require that the probability values be discrete, numeric values, while in fuzzy set

16

theory, the likelihood indicates a range of values. This range, represented hy a linguistic term,

encompasses the inherent imprecision often found in security analysis (Schmucker84:20).

While all of these methods have similar capabilities and drawbacks, I found that fuzzy set

theory seems to provide the most acceptable method for modeling and analyzing vulnerability data.

Fuzzy set theory, at least in concept, can use natural language to quantify and reason about

concepts describing ambiguous characteristics of an object or event (Giarratano89:291). The

choice of fuzzy set theory to analyze vulnerabilities is not without support from other researchers.

According to one researcher in the use of natural language for risk estimation, the increase in

accuracy of the overall estimates by using natural language ranged from 16% to 32% (Nagy81).

The use of natural language values helped to eliminate the extremely inaccurate estimates

(Schmucker84:36).

2.4 Analysis Methods

2.4.1 Introduction. There are two general methods to analyze vulnerabilities:

quantitative and qualitative. The quantitative method involves assigning numeric values to the

attributes of the vulnerabilities and then using statistical and probabilistic techniques to evaluate

the vulnerability of a system. The qualitative method involves assigning value judgments, also

known as linguistic values, to the attributes of the vulnerabilities and then a technique such as

fuzzy set theory is used to evaluate the vulnerability of a system.

As pointed out by Wood, et.al., security experts differ in opinion as to which method

(quantitative or qualitative) is the best for the evaluation of computer security (Wood87:7) and

Schmucker indicates that there is no "established or standard" way to perform the evaluation of

computer security (Schmucker:43). The reasons for this are threefold. First, many experts are

17

opposed to change. If an expert has been using a particular method throughout his career, he is are

not likely to want to learn, or possibly even recognize, another method. Second, there tends to be a

significant cost difference between the two methods (Wood87:7). This cost difference can be

attributed to the amount of information required for each method. Third, because of the extremely

subjective nature of analyzing computer security vulnerabilities, no two experts can agree on the

meaning attributed to results produced by any particular method.

The discussion below outlines the efforts of other authors to develop systems capable of

dealing with this uncertainty in performing vulnerability and risk analysis. Most of these systems

are risk analysis systems where vulnerability analysis, if present, is a sub-component of the overall

system. There is no defulitive method to perform the vulnerability analysis portion of a risk

analysis.

Wood, et.al., advocates the use of a weighted average of all vulnerabilities (Wood87:12).

Schmucker also ubes a weighted averaging scheme, but vulnerabilities are represented by a

category and component hierarchy with the weighted average propagated up the hierarchy

(Schmucker84:47). Hoffman and Neitzel follow an approach identical to Schmt'¢ker's

(Hoffman80:366). The three systems above all use an estimate of the probability that the

vulnerability will occur.

Wong advocates a system that uses past historical data to determine the frequency that a

vulnerability occurs and modifies this frequency with a weighting factor to try to predict when the

vulnerability might occur in the future (Wong77:98). For vulnerabilities with no historical data,

Wong recommends using a statistical survey (Wong77:101). The last system identified is one

proposed by Carroll. Carroll's system is business oriented and calculates the annual loss

expectancy and return on investing in security measures (Carroll84:5).

18

2.4.2 Quantitatve Analysis. Three of the identified risk analysis methods are based on

quantitative analysis: Wong, Carroll, and Wood. Wong's method is based on the "loss unit

concept" and is shown in Figure 2. Wong uses the term risk interchangeably with vulnerability.

Once values have been derived for all of the frequencies of occurrence (F) and the range of

consequential loss (L, L'), the sum of the products (Y Fi * Li) is calculated to produce the expected

loss while the sum of the products (I Fi * Li') is calculated to produce the maximum expected loss.

To predict future losses, a weighing factor is multiplied to each Fi, Li, and Li'. These weighting

factors relate past frequencies of occurrence and consuquential losses to predicted future values

(Wong77:98). This method makes no attempt to analyze the vulnerabilities, what Wong calls

risks, for importance or impact. The only measure used is the frequency of occurrence.

Past frequency of risks (F) Range of consequential loss (L, L')

ACCIDENTAL DIRECT

Risk 1 (Fl) s I (LILV)
Risk 2 (P2) Cons 2 (L2, L2')

SLOSS •'--•-•ons 3 (L3, L3Y)

ons A (LA, LA')
DELEBRATEons B (LB, LB')

Risk A (FA) ons C (LC, LC)
Risk B (FB)
Risk C (FC) INTANGIBLES

Cons X, Cons Y, Cons Z

Figure 2. Loss Unit Concept (Wong77:94).

Carroll's risk analysis method is based on calculating the return on investment given by

placing security measures in place. This return on investment is calculated by computing the

difference in annual loss expectancy without security measure and the annual loss expectancy with

19

security measures. The annual cost of security measures is subtracted from this difference to

provide the return on investment (Carroll84:5). One of the values used by Carroll to calculate the

annual loss expectancy is a vulnerability rating. This rating is calculated by assigning a subjective

value from 1 to 5 representing the severity of a vulnerability. Th's value is then converted using a

logarithmic scale to a value between 0 and 1. Carroll contends, but provides no supporting

references, that "human judgment tends to be quite accurate at the lower end of a subjective scale

but not so good at the upper end." (Carroll84:9 1).

The last quantitative risk analysis method presented is Wood, et.al. Wood, et.al., have

identified the most prevalent vulnerabilities present in most computer systems and provide these

vulnerabilities in a check-list format. In this method, each vulnerability present in a system is

scored with a numeric value of 0.9, 0.7, 0.5, 0.3, or 0.1. These values represent the linguistic

equivalent of Very High, High, Medium, Low, and Very Low respectively. Once the check-list has

been completed, the ratio of vulnerabilities present to the vulnerabilities listed in the check-list is

calculated for each possible score. A weighted fraction is then calculated, as shown in Equation

(2), by summing the products of the ratios with their respective scores and dividing by the sum of

the scores.

NR(O.9) +NR(0.7) NR(O.1)NR0)xO0.9+÷ xO0.7+...+ xO0.1

FW= N(0.9) N(0.7) N(0.1)
0.9+0.7 +0.5 +0.3+ 0.1 (2)

where: NR(x) = number of relevant vulnerabilities for score x
N(x) = number of vulnerabilities in check-list for score x (Wood87:12)

This reciprocal of this weighted fraction is calculated and is referred to by Wood as the

applicability index. A non-adjusted score is calculated by taking the sum of the products of the

number of relevant vulnerabilities and their respective scores (i.e., NR(0.9)*0.9 + NR(0.7)*0.7 +

20

+ NR(0.1)*O.1). A maximum possible score is calculated by taking the sum of the products of

the number vulnerabilities in the check-list for each possible score and their respective scores (i.e.,

N(O.9)*0.9 + N(O.7)*0.7 + ... + N(0.1)*O.l). The adjusted score is computed as the product of the

non-adjusted score and the applicability index. The final calculation produces a what Wood calls a

control comprehensiveness indicator and is the ratio of the adjusted score and the maximum

possible score. This values is to be used as an indicator of how well the system security measures

perform with respect to the vulnerabilities identified in the checklist (Wood87:13-16).

As an overview of the quantitative methods presented, a few of the benefits and detractors

of these methods should be mentioned. First, significant effort must be put into acquiring the

numerical probability that each vulnerability will occur. Also if any of the vulnerabilities are

dependent on each other, the dependent probabilities must be determined. Obviously, this requires

an extensive statistical database that covers all of the vulnerability combinations (Wong77:83).

The quantitative methods also suffer when this statistical information is not available for a given

vulnerability. In fact, when no statistical information is available, the assignment of the

probabilities of occurrence becomes subjective(Wong77:101). In other words, the expert, in the

absence of statistical data, makes a qualitative value assignment and translates that value into a

numeric value. If a comprehensive statistical database is available, the quantitative methods tend

to remove the subjective biases induced through estimation (Wong77:84).

2.4.3 Qualitative Analysis. In qualitative methods, value judgments are associated with

each vulnerability. These value judgments are often based on the instinct, intuition, and experience

of the expert performing the evaluation, but may include some statistical bias. For instance, if an

expert knows from experience that users often use common words for passwords, then the

vulnerability caused by not changing passwords frequently may have a higher importance than

users writing down their passwords. If on the other hand, the expert knows that the system

21

generates random passwords, the vulnerability of users writing down their passwords would be

higher than that of infrequent password changes.

The two remaining risk analysis systems identified are based on qualitative analysis

methods. These systems are identical in their approach in that they use fuzzy logic and linguistic

variables to perform the analysis. Both the Schmucker system and the Hoffman and Neitzel

system use a fuzzy weighted average. Each vulnerability is assigned three linguistic values to

represent possibility of loss, severity of loss, and reliability of estimate. The vulnerabilities are

represented in a hierarchical network to indicate the interdependence of vulnerabilities and also to

indicate the various sub-components of the system being analyzed. For each parent node in the

hierarchy, the weighted average of the children nodes is calculated and assigned as the risk of the

parent node. This process is repeated with the weighted averages propagated up the hierarchy until

a single risk value is generated for the top node (Schmucker84:45-47, hoffman80:370).

Schmucker goes into great detail as to how to perform this weighted average (Schmucker84:49-55)

while Hoffman and Neitzel simply provide a conceptual overview (Hoffman80:370).

2.5 Organization of Vulnerability Information

Regardless of whether quantitative or qualitative methods are used, there are several

formats for organizing the vulnerability information. Wong advocates the use of a top-down

hierarchy to represent the entire structure of vulnerabilities (Wong77:7). This top-down structure

is built using information from a variety of sources that include procedures, company and account

information, contract information, site inspections, interviews, and functional flowcharts (Wong77:

43). Combining all of thc-ze c:t:urces, the analyst is able to generate a hierarchy of vulnerabilities.

Schmucker also advocates the use of a top-down hierarchy to represent vulnerabilities. This

22

hierarchy is based on the decomposition of the computer system into components and dependent

vulnerabilities (Schmucker84:45).

Another method used to represent vulnerabilities is a check-list. ARES is an example of

such a check-list system. In this type of system, all of the possible vulnerabilities are known and

the analyst merely indicates the presence or absence of each vulnerability. ARES suffers in that

the importance of each vulnerability is not known and that no real vulnerability analysis is

performed. Wood, et.al., also provide a check-list approach. Wood, et.al., generated their list of

vulnerabilities based on work performed for the Lawrence Livermore National Laboratory and the

former USAF Logistics Command. This checklist contains 857 identified vulnerabilities

(Wood87:14) where a predetermined importance value is associated with each vulnerability

(Wood87: 10). Carroll also provides a check-list though not as comprehensive as Wood, et.al.

2.6 Current Air Force Analysis Tools

As mentioned earlier, ARES was an attempt to close the gap in computer security between

the number of risk analyses the security mangers could perform and the number of systems

requiring analysis. However, as with any computer product, users identified several shortcomings.

Foremost, ARES provided no method to evaluate identified vulnerabilities. ARES simply provided

a list of vulnerabilities to the CSO partitioned into several categories: Audit Trails, Backup,

Contingency Plan, Documentation, Information Access Control, Magnetic Remanence (i.e.,

traces), Media Storage and Control, Operating System, Passwords, Physical Security, Small

Computers, Software Configuration Management, and Security Test and Evaluation.

Within a category, ARES did not differentiate between vulnerabilities based on their

potential impact to the system security. For example, ARES did not differentiate between a door

23

with no lock in an unclassified environment and a system processing Top Secret data with no

passwords. Both were listed as vulnerabilities under Access Control. It was up to the CSO to

determine which vulnerability was more important. Because of this failing, a CSO may overlook

serious flaws in a system if many minor flaws are mixed in.

To aid in fixing this shortcoming, AFIT proposed a long term multi-phase project. The

first phase of the project identifies, evaluates, and develops methods to evaluate computer security

vulnerabilities. Other phases will deal with implementing and integrating the methods into ARES

or a similar program and expanding the use of automated methods into performing the valuation

and risk assessment of the overall system.

2.7 Automating Computer Security Analysis

There are three basic problems hampering the automation of computer security analysis:

secrecy, attitudes about security, and changing technology. Computer security analysis is often

shrouded in secrecy. The reasons for this secrecy are threefold. First, no computer facility is

absolutely secure. Consequently, no security analysts will reveal what vulnerabilities exist at their

site. Second, when a security analyst develops a method to determine the level of security at his

site, he often will not publish the results. This is to prevent the security analyst's opponents from

using the method to determine his security vulnerabilities. Last, security analysis, at least in the

past, can be considered a "black art". A security analyst often makes decisions about the relative

security of a site based on instinct, intuition, and experience rather than rules and formulas. Given

this subjective analysis, it is very difficult to automate security analysis.

Another reason computer security analysis has not been successfully automated is the

attitude about security in general. In the research community, computer security is often viewed as

24

a hindrance. Users often want to share their findings with many colleagues and thus will try to

circumvent safeguards to allow freer access to their data and system. Users also tend to have very

myopic views about the scope of security. They may intend to only allow access to their files by

selected colleagues when in fact they open up the entire system to everyone. At most sites, the only

personnel who are truly security conscious are the system administrators and CSO.

The last hurdle in trying to automate computer security is changing technology. Twenty

years ago, most computers were large mainframes with many terminals connected. Outside access

to the systems was minimal if existent. Today, computers are connected worldwide via high speed

networks. With the speed of these networks reaching 100 megabytes per second transfer rate, it

only takes a few seconds for large amounts of data to be compromised.

The other change in technology is the proliferation of personal computers. As of 1988,

over 45 million personal computers were in use. In that same year, personal computers made up

92% of the total computers shipped by US manufacturers. For the five year span of 1987 through

1991, US manufactures shipped almost 32 million computer systems; personal computers

accounting for 29.5 million of the systems. The government alone had a ten fold increase in the

use of personal computers. Also of interest was the increase in the number of workstations sold

during this 5 year period: while mainframe sales decreased by 62%, workstation sales increased by

360%. (Census93:Tables 648, 1273, and 1274)

What this implies is that methodologies developed to ensure the security of large

mainframes with dedicated terminals may not necessarily work for large distributed networks with

many individual personal computers and workstations.

Given these problems, the need for automating computer security has never been greater.

Computer security analysts need effective and reliable tools to help them evaluate the risks and

25

vulnerabilities associated with computers. They need tools that are adaptable to new technologies

and scalable to handle the increasing number and types of systems requiring evaluation.

2.8 Summary

There is a definite need to perform timely and accurate evaluation of computer security

vulnerabilities. The ability to handle uncertain information is paramount in performing this

evaluation. The evaluation method should not require an extensive statistical database in order to

establish a baseline for processing. Because of increasing numbers of computer systems and thus

the required number of evaluations to be performed, the evaluation process needs to be automated.

Much emphasis is placed on performing risk analysis of computer systems, but little

emphasis is place on vulnerability analysis. As one author stated, 'The process of risk analysis

centers on vulnerabilities" (Carroll84:87).

Of the tools available to assist in automating the evaluation of computer security

vulnerabilities, those Al tools with the capacity to reason with uncertainty appear to hold promise.

There are many Al methods that provide the capability to evaluate uncertain information, a few of

which have been presented in this chapter. Of these, I find fuzzy set theory the most interesting

approach and it appears to have promise for dealing with the inherent imprecision found in security

analysis. Fuzzy set theory has the capability to describe and maintain the relationship between two

facts, whether well- or ill-defined, and through the use of linguistic variables, provides an intuitive

(to the author) language-based interface between the system and the security analyst.

26

MI Methodology

3.1 introduction

The methods used to evaluate computer security vulnerabilities can be divided into two

main types: quantitative and qualitative. Quantitative methods involve assigning a numerical value

to each criterion under consideration and usually involve probabilistic or statistical analysis.

Qualitative methods assign a linguistic value to each criterion. These linguistic values include

terms such as high, low, likely, possible, and never. A qualitative analysis method that uses

linguistic terms is fuzzy logic. With either approach, the assignment of a value, whether a numeric

quantity or linguistic quality, is subjective in the absence of an extensive statistical database.

3.2 Over,/ew

This chapter outlines the methodology used to develop an AI method to assist in the

evaluation of computer security vulnerabilities. It is my contention that a qualitative approach

will provide comparable results: it is computationally feasible, theoretically sound, scalable, easier

to use, and more intuitive to the user. The main result of this research is the demonstration of the

feasibility of using a qualitative analysis method to evaluate computer security vulnerabilities.

In order to demonstrate the feasibility of using a qualitative analysis method to evaluate

vulnerabilities, a comparable quantitative analysis method had to be identified or developed. As

discussed in chapter 2, the available research focused on risk analysis methods, not vulnerability

analysis. Where vulnerability analysis was mentioned, it involved the subjective assignment of

values to the vulnerabilities. Not finding any existing vulnerability analysis system, I developed

27

my own. Without any industry standard to benchmark my development against, the methods I

developed and present here are based on the intuition and experience I developed as a computer

systems analyst for and manager of a very large, secure data processing facility.

To ensure the vulnerability analysis system I developed wasn't biased towards my

hypothesis, I developed the quantitative analysis method first. This system is based on standard

statistical methods of analysis for independent vulnerabilities. Independence of vulnerabilities is

assumed to minimize the effects of combinatorial explosion. Although in the real world,

vulnerabilities are not necessarily independent, I felt it was best to keep the systems simple. This

simplicity makes the results easier to compare.

I then implemented a qualitative method using the same assumption of independence, but

using fuzzy set theory as the primary analysis method. I chose fuzzy set theory because I felt it

best represented a fully qualitative approach. I based my initial fuzzy set theory implementation on

the work of Schmucker, but discovered that this method suffers from combinatorial explosion. To

overcome this, I developed an alternative table lookup method. The reasons and justification for

using this table lookup method are provided later in this chapter.

One concern was the applicability of this research to existing risk analysis systems. As

most of the existing systems identified simply require a subjective vulnerability value, I contend

that a systematic analysis of identified vulnerabilities should increase the accuracy of these risk

analysis systems. This contention is made based on intuition as opposed to empirical evidence.

Due to time and budgetary constraints, I was not able to obtain a working implementation of any of

the mentioned risk analysis systems in order to prove my contentions. However, I feel that any

systematic approach that is reasonable is better than a subjective guess.

28

3.3 Background

There are two inain methods I used in this thesis to evaluate vulnerability data. The first is

a quantitative method based on statistical analysis. The second is a qualitative method based on

fuzzy logic as proposed by Zadeh (Zadeh65:338). Below are the specifications of the methods

used.

Each method implemented used a subset of the vulnerabilities identified by trial runs of

ARES. This data, shown in Appendix B, was only used as a demonstration vehicle for each

method and is the result of many varied runs of ARES. The probability distributions and influence

values associated with the identified vulnerabilities were randomly generated and, therefore, the

vulnerability values shown do not represent an actual system. However, the data is representative

of a possible system.

3.4 Statistial Analysis.

The statistical analysis method used is straight-forward and should be familiar to most

readers. The main text used for this analysis method is "Probability and Statistics for Engineers"

by Scheaffer and McClave (Scheaffer86: 1). For each vulnerability, eight values are given. The

first value, 'vuln-inf luence', given with each vulnerability indicates the overall influence of that

particular vulnerability across all seven functional areas. This value, between 0 and 1, represents

the subjective rating of importance of this vulnerability with respect to the overall vulnerability of

the system. The rating value given assumes that the vulnerability is independent from all other

vulnerabilities. The other seven values, indicated by the prefix 'dist-', represent the allotment of

29

this vulnerability's influence to each of the defined functional areas presented in the previous

chapter. Each of these allotment values range from 0 to 1 and indicate how much of this

vulnerability's influence value is applied to a specific functional area. These allotment values can

also be thought of as an impact rating indicating the degree to which this vulnerability impacts a

particular functional area.

Two separate processes are performed on the data. The first is a statistical analysis for

each functional area. For each functional area, the total influence given, the weighted average of

influence given, the standard deviation of influence, and the percentage of influence are calculated.

The product of the influence value and the functional area distribution value is used as the

contribution by each vulnerability. The contributions of all vulnerabilities to a specific functional

area are summed to generate the total influence given to that functional area. This sum is then

divided by the number of vulnerabilities contributing to produce the weighted average of influence

given. The standard deviation of influence is calculated using the contributions of each

vulnerability for a specific functional area. The percentage of influence is calculated by taking the

total influence given for a functional area and dividing by the sum of the total influence given for

all areas.

The second process performed on the data involves identifying those vulnerabilities that

contribute significantly to each functional area. This is done by identifying and listing those

vulnerabilities that are in or matching the top 10% of the contributors (i.e., if 50 vulnerabilities are

in the system, then at least the top 5 contributors, but maybe more depending on tying conditions).

Tying conditions prevent the strict application of a 10% cutoff. With no other information

available other than contribution, it is not reasonable to discriminate against a vulnerability if its

contribution value ties with one in the top 10%.

30

Also identified are those vulnerabilitis that are in or matching the top 1U% of more than

one functional area. It should be apparent that the vulnerabilities that occur in or match the top

10% of the most functional areas are the most critical. The purpose of this is to identify to the

computer security expert those vulnerabilities that should be addressed first.

Groupings of vulnerabilities is also performed based on units of standard deviation as

measured from the maximum contributor. In other words, those vulnerabilities within 1 standard

deviation, 2 standard deviations, and so forth. The use of the standard deviation is an arbitrary

choice, but does provide some sense as to how the vulnerabilities could be grouped.

3.5 Fuzzy Logic.

For the fuzzy logic analysis, two approaches were implemented. The first was a

calculation method based on the method implemented by Schmucker and the second approximated

these calculations using a table lookup.

In both methods, it is impossible to take a weighted average of linguistic values since the

definition of weighted average implies divisioui by the number of terms in the summation. For

fuzzy logic, it is more appropriate to use a normalized average. In the statistical analysis method,

the sum of the contributions to a functional area was divided by the number of vulnerabilities

contributing to that functional area to produce a weighted average of influence. This was possible

since the maximum contribution of any one vulnerability to any functional area was one and the

sum of these maximum contribution equals the number of vulnerabilities. In the fuzzy logic

analysis, this weighted average is simulated by normalizing the sum of contributions by the sum of

the influence values for each vulnerability. The sum of influence values in the fuzzy logic analysis

method is equivalent to the sum of the maximum contributions in the statistical analysis method.

31

As in the statistical analysis method, two separate processes are performed on the data.

The first provides the total influence given to the entire system, the influence given to each

functional area, and the normalized average influence given each functional area. Since linguistic

values are used, it is not possible to generate a standard deviation or percent of influence given.

The contribution of each vulnerability to a functional area is again the product of the

vulnerability's influence value and distribution value. The sum of these contributions make up the

total influence given to each functional area. The sum of the total influence given to each

functional area gives the total influence given the system. The normalized average influence is

calculated as the total influence given each area divided by the total influence given the system.

The second process performed on the data is again the identification of those

vulnerabilities that provide significant contribution to each functional area. The same top 10%

criteria is applied to the fuzzy results as was appliU-d to the statistical results in order to identify

critical vulnerabilities. Since the standard deviation cannot be calculated, the linguistic values

themselves are used to group the results. What follows is a discussion of the two methods used to

perform the fuzzy arithmetic and a discussion of fuzzy arithmetic in general.

3.5.1 Schmucker's Calculation Method. In the first approach implemented with

fuzzy logic, the calculations were based on Schmucker (Schmucker84:48) and used the equations

shown in Equation (3) for fuzzy arithmetic. In the equations the notation a(i)/i represents the fuzzy

element i in the set with membership in the set of a(i). Schmucker explains his fuzzy arithmetic

equations as follows:

32

What this definition means computationally is that to compute the degree of
membership of, say, 8 in A+B, we have to examine all of the possible ways that
two integers (taken from the set 11, 2, 3, 4, 5, 6, 7, 8, 9)) can sum to 8 and
examine the degrees of membership of these pairs. Thus, if the degree of
membership of 8 in A + B was x, then x would be computed as follows:

x = max~min(a(J), b(7)), min(a(2), b(6)), min(a(3), b(5)), min(a(4), b(4)),
min(a(5), b(3)), min(a(6), b(2)), min(a(7), b(l))).

Each of the minimum operations computes one of the degrees of membership of 8
in the set A + B. We then take the greatest such degree of membership to be the
degree of membership of 8 (Schmucker84:48).

A-={a(i)/ I 1 i n}
B={b(j)/j il_ j_5jn}

A+B =max{{min(a(i),b(j))} /[k]}I 1_ ,1 _n,k = i+j

A * B = max{{min(a(i),b(j))} /[k]} 1_ Q, _5 n,k = i * j

AlB=rmax{{min(a(i),b(j))}/[k]} 1_< i,1 <n,k =i / j (3)

where: ij, and k are fuzzy set indices
n is the number of elements used to describe the fuzzy set

Here, the fuzzy set is defined over n elements. Although fuzzy sets can be defined over

continuous functions, it is much easier to implement using a discretized set. The foundation for

these equations is based on Zadeh's extension principle and a good explanation is given in

Appendix B of Schmucker's book (Schmucker84:133). Similar methods for fuzzy arithmetic are

outlined by Kaufmann and Gupta (Kaufmann85:14)

Before continuing, an example of how these equations operate is beneficial. For

simplicity's sake, we will define three sets with three discrete points.

ONE = (1/1, 0/2, 0/3)
TWO ={0/1, 1/2, 0/3)
THREE = {0/1, 0/2, 1/3)

If we add ONE and TWO we get the following:

ONE + TWO = (0/2, 1/3, 0/4, 0/3, 0/4, 0/5, 0/4, 0/5, 0/6)

33

and multiplication results in:

ONE * TWO = { 0/1, 1/2, 0/3, 0/2, 0/4, 0/6, 0/3, 0/6, 0/9)

It should be noted that missing elements are assumed to have a membership of zero and for

terms with multiple indices, the maximum membership value is used. Therefore, the resulting sets,

after correcting the terms are as follows:

ONE + TWO = (0/1, 0/2, 1/3, 0/4, 0/5 0/6)

ONE * TWO = {0/1, 1/2, 0/3, 0/4, 0/5, 0/6, 0/7, 0/8, 0/9)

Based on the equation above, the result of a division is the following.

TWO / ONE = {0/1, 0/0.5, 0/0.33, 1/2, 0/1, 0/0.67, 0/3, 0/1.5, 0/1)

Division is used by Schmucker to produce a weighted "average" of the influence in his

vulnerability analysis. To simplify the results of fuzzy set division, Schmucker uses a nethod

proposed by Clements. This method places in the set resulting from the fuzzy division, only those

terms i and j, which when i is divided by j result in an integer. The example below demonstrates

this simplification.

TWO / ONE = (0/1, 1/2, 0/1,0/3, 0/1)

As before, should multiple fuzzy set indices occur, the index with the maximum

membership is used in the final normalization of results. This results in the following:

TWO / ONE = {0/1, 1/2, 0/3)

The major drawback of implementing Schmucker's method is how the fuzzy sets expand.

For instance, if 50 fuzzy sets, each defined over 7 terms, are added, the resulting set is defined over

350 terms. The expansion problem is greatly exacerbated for multiplication. If the same 50 sets

are multiplied together, the resulting set contains 750 or almost 1.8 x 1042 terms.

This is clearly not feasible for vulnerability analysis where the possibility exists for many

hundreds of vulnerabilities. Even using the weighted averaging function defined by Schmucker,

34

which will return a final result fuzzy set with the same number of terms as the primary sets

(Schmucker84:49), the intermediate calculations within the averaging process tend to make the

fuzzy set calculations intractable.

An example demonstrates this very quickly. Assume 50 identified vulnerabilities, each

vulnerability distributed over 7 functional areas and containing a single vulnerability influence

value. To calculate the weighted average for a single functional area would require that the

numerator of the weighted average function contain a fuzzy set definition with 2450 elements and

denominator contain 350. This assumes that the primary fuzzy set is defined over 7 elements. The

numerator consist of adding 50 49-element sets. The 49-element sets are generated by multiplying

2 7-element primary terms (the distribution value for a functional area and the influence provided

by that vulnerability). The denominator is the sum of 50 7-element sets.

For each iteration through the equation, i.e., for each i and j, two operations are required.

The first is the mathematical operation on the index and the second is the comparison for the

minimum value at a(i) and b(j). Each multiplication of the 2 7-element sets requires 98 operations.

The first addition of 2 49-element sets requires 4802 operations (49 indices in first set, 49 indices

in second set, 2 operations per index) resulting in a 98-element set after normalization. For the

sake of simplicity, we will assume normalization requires zero operations. The second addition

requires 9604 operations; the third requires 19208 operations and so forth. For this example, the

number of operations required for each successive addition grows on the order of 2n-l. Clearly,

this is not computationally feasible for any large number of vulnerabilities.

3.5.1.1 Translation of Fuzzy Set to Linguistic Term. After a set has been

normalized, it is 'translated' to a linguistic term. In this case, a "best fit" approach is used to

translate a fuzzy set to a linguistic term. The equation to do this best fit is given in Schmucker

(Schmucker84:56) and is shown in Equation (4).

35

The actual translation occurs when the Euclidean distance is calculated for each of the pre-

defined fuzzy terms. The fuzzy term with the smallest distance from the set of interest is

considered the "best fit".

where: X is fuzzy set to be translated
F is fuzzy set representing a pre-defined linguistic term

There is an ambiguity with this method. The problem occurs when the Euclidean distance

is the same for two or more fuzzy sets. As implemented, the system will choose the linguistic term

with the 'lowest' relative value. This in part is to prevent the system from suffering combinatorial

explosion.

3.5.1.2 Normalization and Convexity of Fuzzy Sets. This implementation

made use of normalized and convex sets. The use of normalized and convex fuzzy sets aids in

'translating' a fuzzy set back to a linguistic term as shown above.

A normal fuzzy set is where the element(s) of the set with the maximum membership value

has (have) a membership value of one. A fuzzy set A is normal if and only if

Vx eR;max 4A(X) = 1
x

where p.A(x) represents the membership value of element x in fuzzy set A

(Kaufmann85:12).

A convex fuzzy set is where if the set was plotted, it would have at most one positive slope

and at most one negative slope. Note that the plot of the set is not required to have either (e.g., a

horizontal line), or may have only a single positive or a single negative sloping line, or may have

both, but it cannot have more than one positive or more than one negative sloping line if the fuzzy

set is to be convex.

36

A fuzzy set A is convex if and only if,

Vx,y e R:••[[Rx+ (I- 2y] RA (X) ^A(y),VZ e [0,1].

where ILA(x) and lrA(y) represent the membership values of elements x and y respectively

in fuzzy set A (Kaufmann85: 11). The purpose of making a set convex is to prevent conditions like

High and Low from occurring simultaneously. Of course, this could be represented by Not

Medium, but that is an implementation choice.

I did however, make use of convex sets in my implementation of Schmucker's fuzzy

arithmetic. This was particularly important for the fuzzy multiplication of two seven-element

fuzzy sets that returned a set of 49 terms. These sets usually had many peaks and valleys.

Depending on where these peaks and valleys fell, the translation back to a linguistic term would

produce unreliable results. For instance, Very High * Very High would return Very Low. This is

because once the set was mapped back to a 7-element set, the value at element 1 would be greater

than any other value. By making the 49-element set convex before mapping back to a 7-element

set, this eliminated that problem.

There is a concern that normalizing a fuzzy set and making a fuzzy set convex will change

the meaning of the fuzzy set prior to these operations being performed. The reason these

operations are used, even though they may change the meaning of the original fuzzy set, is because

without ensuring the convexity and normalization of the fuzzy set it is extremely difficult to find a

linguistic expression to represent the original fuzzy set. As pointed out above, the use of convexity

and normalization prevent the case of a fuzzy set being described as both High and Low but not

Medium.

3.5.2 Table Lookup Method. The second approach implemented using fuzzy logic

attempted to overcome the combinatorial explosion. To do this, a table lookup method was

37

implemented to perform the fuzzy mathematical operations. The values for the addition and

multiplication fuzzy function tables are shown in Tables 1 and 2 starting on page 51. These tables

were derived using a method that attempted to model the behavior of the equivalent numeric

functions. The behavior of the function is such that adding a small (relative magnitude between 0

and 1) number to a small number produces as small number. Likewise, adding a large number to a

large number produces a large number.

The translation of the numeric value into its equivalent linguistic term was accomplished

using both a linear mapping and a non-linear mapping. The linear mapping was produced by

dividing the range of 0 to 1 into even groups. In this case, I had seven linguistic terms, so each

group equaled one-seventh. Any value between 0 and 1/7 was assigned to VERYLOW, any value

between 1/7 and 2/7 was assigned to LOW, and so forth.

The non-linear mapping was based on the fuzzy distributions defined in Figure 3. These

fuzzy sets were arbitrarily chosen with the intent to build a model with a large middle and small

extremes. The goal of building this model was simply to test the effectiveness of a table lookup

scheme using a non-uniform distribution mapping. Here, the assignment occurs to those linguistic

values where the numeric value has a maximum membership. For instance, 0.03 would map to

VERYLOW, but 0.04 would map to LOW.

To actually build the table, a simple program was built with two loops that iterated from 0

to I in increments of 0.001. The value of each loop was translated to a linguistic term in order to

determine the fuzzy set these values were in. The indicated operation was performed on the

numeric values and the result was translated to a linguistic term. By keeping track of how many of

each linguistic result occurred given the linguistic input values, and using the linguistic result with

the maximum occurrences, the function behavior was mapped.

38

1N0.9' ----.. VERYLJDW

0.8 / . ,
0.7 LOW
0.6- \ N -- EDLA)W

0.5/- MEDIUM
0.4 -- - -MEDHIGH0.3 ' "• "I
0.3, HIGH

0\ / o -- VERYHIGH
0.1

0
0 1/7 2/7 3/7 4/7 5/7 6/7 1

Figure 3. Defined Fuzzy Sets.

For instance, in building the linear mapping multiplication table, the input values might be

0.5 and 0.2. The 0.5 would map to MEDIUM and the 0.2 to LOW. The product of 0.5 and 0.2,

0.1 maps to VERYLOW. However, if the inputs were 0.56 and 0.28, again mapping to MEDIUM

and LOW respectively, the result, 0.1568 maps to LOW. This is an example of the boundary

condition caused by mapping an infinite sequence of values onto a finite map. As is turns out in

this example, with the loops providing a 1000 values from 0 to 1, there are 19,138 VERYLOW

products of MEDIUM and LOW and 1,311 LOW products. Because of the preponderance of

VERYLOW results, that value is used to represent the result of multiplying MEDIUM and LOW.

It should be pointed out that this method maintains the normal commutativity of multiplication and

addition.

After repeated trials, it was determined that the linear mapping best represents the desired

behavior of the addition and multiplication functions.

3.5.3 Fuz7y Arithmetic. Fuzzy arithmetic is created by using the extension principle

outlined by Zadeh and discussed by Schmucker (Schmucker84:133). The extension principle

39

allows for any function to be mapped to fuzzy sets. By using the functional definitions of addition,

multiplication, and division for real numbers and mapping these functions into the fuzzy set

domain, the equations shown in Equation (3) on page 33 are derived.

The biggest problem in trying to implement an algebra defining fuzzy arithmetic involves

the lack of an infinite domain space. The extension principle assumes the existence of an infinite

domain space made up of all the possible fuzzy sets. This is a valid assumption for the theoretical

generation of fuzzy functions, but leads to a problem in an actual implementation of a fuzzy

algebra.

To demonstrate this, assume there exists three primary fuzzy sets: LOW, MEDIUM, and

HIGH. Also assume a hedge or modifier has been defined: VERY. The hedge is an operation

performed on a primary fuzzy set. The problem arises in the semantic meaning of the results when

a hedge is applied repeatedly. Assume VERY is applied repeatedly giving the result of VERY-

VERY-VERY-VERY-VERY-VERY-LOW, that will be represented here as VERY6 LOW. While

most would agree that there is a different semantic meaning to VERY LOW and VERY 2 LOW,

there is little semantic difference between VERY 6 LOW and VERY7 LOW. What about

VERY100 LOW and VERY 10 1 LOW? What is the difference between VERY' LOW and

VERY I' LOW?

For the last question, I conclude there is none based on the definition that co-1 = Ic. Where

then is the line drawn to represent difference? The line is drawn subjectively by the implementer of

the fuzzy algebra, much as a programmer decides the number of significant digits used to represent

real values. Given a subjective cutoff for significance, this defines a finite number of fuzzy sets

that can be used to represent all the values possible in the implementation of the fuzzy algebra.

Another problem in implementing fuzzy arithmetic involves the semantic meaning of the

operations. There is no single meaning that can be applied to performing an arithmetic operation

40

on fuzzy sets. Although there is an intuitive meaning to the term "addition", especially with real

numbers, the intuition falls short for fuzzy sets. An example best demonstrates this lack of

intuition.

Assume the problem requires adding HIGH and LOW. If it is assumed that both values

are positively increasing then adding LOW to HIGH will only increase HIGH, possibly to VERY

HIGH (see Figure 4). Another way to state this assumption is that only positive values can be

represented. A real world example is vulnerability analysis. If the influence of one vulnerability is

HIGH, and the other is LOW, then the total influence of both would be HIGH to VERY HIGH.

If on the other hand, it is assumed that one of the fuzzy sets represents a median value,

then "adding" LOW to HIGH will result in a value of MEDIUM. This assumption has the effect

of causing those fuzzy sets below (linguistically represent smaller values) the median value to be

'negative' from an additive point of view and those above (linguistically represent larger values) the

median to be positive (see Figure 5). The net effect of adding two fuzzy sets under this assumption

is to generate an 'average' of the values that the two fuzzy sets represent. Using this method

requires an odd number of fuzzy sets be defined. If the influence of one vulnerability is HIGH and

the other is LOW, then the influence distributed across both vulnerabilities is MEDIUM.

Both assumptions concerning the meaning of "adding" two fuzzy sets are valid, but

mutually exclusive. The meaning implied by the "addition" of two fuzzy sets is subjective and

implementation dependent.

The same ambiguities carry over into multiplication. Although the concept of

multiplication when dealing with real numbers is simple, fuzzy set multiplication is not so easy to

understand. Multiplication is nothing more than repetitive addition. The multiplication of the

integer values 4 and 5 together can be stated as the addition of 4 to itself 5 times. The translation

to fuzzy multiplication becomes confusing when HIGH is "added" to itself LOW times.

41

1If

0.8 ". * VERYLOW

0.6- LOW

\- U MEDIUM
0.4- * 4 GH

0.2- VERYHIGH.

0
0 1 2 3 4

Figure 4. Positive Increasing Fuzzy Sets.

0.8 ii UrnVERYLOW

0.6- LOW

-U-MEDIUM0.4 -DIU

.!°.\ + -, HIGH

0o.2- VERYHIGH

0a
0.01 0.1 1 10 100

Figure 5. Median Based Fuzzy Sets.

If the first assumption concerning addition is used, then the multiplication of HIGH and

LOW will result in a value of at least HIGH. If the second assumption is used, then the result will

be somewhere near MEDIUM. Again these assumptions seem valid, but are mutually exclusive.

42

A third possibility is that multiplication performs a normalized weighting function. In

other words, the result of multiplying two fuzzy sets together tends to 'shift' one of the sets towards

the other. For instance, HIGH multiplied by LOW would 'shift' HIGH towards LOW and result in

a value of MEDIUM HIGH while LOW multiplied by HIGH would 'shift' LOW towards HIGH

and result in a value of MEDIUM LOW. Immediately, the reader should notice that depending on

how much "shift" is caused by the operation, the commutative law may not hold. If commutativity

is important to the implementation, the "shift" could be symmetric. Also, in this example, the first

term of the multiplication is 'shifted' by the second.

The best way to see how this works is with an example. Suppose we are trying to

determine the magnitude of a budget. If the HIGH cost items only occur a LOW number of times,

then the contribution of the HIGH cost items is MEDIUM HIGH. Conversely, if the LOW cost

items occur a HIGH number of times, the contribution of the LOW cost items is MEDIUM LOW.

Division of fuzzy sets can take on the property of performing a relative order of magnitude

calculation. Here, it is assumed that the median fuzzy set approximates the equivalent numerical

value of one (see Figure 6). Therefore, those fuzzy sets below the median are treated as if

numerically they are between zero and one, while those fuzzy sets above the median are treated as

greater than one. Hence, if a large magnitude number is divided by another large magnitude

number, the result is somewhere near one. If a large magnitude number is divided by a very small

magnitude number, the result is an even larger magnitude number. Conversely, a small magnitude

number divided by a large magnitude number results in an even smaller magnitude number than the

original.

43

3.6 Scalabilky

An issue that plagues many algorithms is scalability. In the case of the statistical analysis

approach outlined on page 29, the equations scale linearly with regard to the data set size. For the

Schmucker method, as well as the Kaufmann and Gupta method, the equations do not scale well.

In both of these methods, the equations will cause exponential growth in the size of the fuzzy set

resulting from the fuzzy arithmetic operations. For the table lookup method, the equations remain

linear regardless of the data set size.:N -.........
0.8 p .-- VERYLOW
06. p -- LOW

--U_--MEDIUM

0.2 VERYHIGH

0 A
0.01 0.1 1 10 100

Figure 6. Relative Magnitude Fuzzy Sets.

3.7 Sample Data Generation

In order to test the methods, sample data had to be generated. The output generated by

ARES version 2.0 was used as a source of possible vulnerabilities. ARES was used for

44

convenience, but a random sample of vulnerabilities could be generated by hand. The

vulnerabilities output by ARES were combined into a single file. These vulnerabilities are in the

form of text strings such as "The system does not use passwords."

This list of vulnerabilities was then put into a LISP object class structure as shown in

Figures 7 and 8. Seven object slots, one for each functional area being considered, are associated

with each vulnerability object. Each slot value represents how the vulnerability is allocated to each

functional area and can have a value in the inclusive range of 0 to 1 for the numeric case. These

values were randomly generated. For the linguistic case, a term is used to represent the

approximate distribution. The linguistic terms implemented were VERYLOW, LOW,

MEDIUMLOW, MEDIUM, MEDIUMHIGH, HIGH, and VERYHIGH. Each of these terms is

subject to the translation mapping discussed in the previous sections.

3.8 Summary

This chapter discussed the qualitative and quantitative methods used in this thesis. The

quantitative method uses statistical analysis techniques familiar to most readers, while the

qualitative methods use fuzzy arithmetic to perform intermediate calculations such as influence

contribution. Two methods to model fuzzy arithmetic are given, Schmucker's methods and a table

lookup method based on behavior grouping. There is a preference for the table lookup method

because of its linear characteristics with regard to the number of vulnerabilities being processed.

Finally, this chapter discussed how the vulnerability data is generated.

45

(setf V100 (make-instance 'vuin-node
:vuln 'The system does not have audit trails.
:code-name 'V1OO
:vuln-influence 0.7334
:dist-.:.udit 0.6833
:dist-::ecover 0.4680
:dist-access 0.5881
:dist-media 0.1887
:dist-os 0.8490
:dist-comfiguration 0.4732
:dist-documentation 0.5845
:vuln-presemt t

Figgure 7. Lisp Object with Numeria Data

(setf F100 (make-instance 'vuin-node
:vuln "The system does not have audit trails.
:code-name 'F1QO
:vuln-influence 'H
:dist-audit MHH
:dist-recover 'M
:dist-access 'MH
:dist-media *L
:dist-os 'H
:dist-configuration 'M
:dist-documentation MM
:vuln-present t

Figure 8. Lisp Object with Fuzzy Data

46

IV Implementation

4.1 Introduction

In this chapter, I will discuss the actual implementation details for two of the analysis

methods identified in the previous chapter. Again, because of the lack of an industry standard, it

was left to my discretion as to how and what to implement. I felt that with simpler tools, the

comparison between methods would be clearer. Therefore, I impliemented a quantitative method

using statistical analysis and a qualitative method using fuzzy logic.

The code for this thesis was implemented on a Sun SPARCstation 2+ running SunOS

4.0.x. The code was implemented using Sun Common Lisp 4.0 with CLOS extensions. The

primary purpose of using Lisp was the ease with which long linked-list structures are handled.

Both the numerical and fuzzy logic implementations used the same CLOS object structure as

shown in Figure 9.

4.2 Quantitative Method using Statistical Analysis

The quantitative method implemented a small subset of statistical measures. These

statistical measures were weighted averaging and standard deviation. These measure were deemed

adequate to demonstrate the type of information derivable from the data. Other more complex

measures could have been implemented, but it was felt they would simply complicate the

comparison between methods and did not appear to provide additional information.

47

(defclass vuln-node 0)
((vuln

:initform ')
:initarg :vuln
.accessor vuln
:documentation "Text string with name of vuln")

(code-name
:initform ')
:initarg :code-name
: accessor code-name
:documentation "code for internal assignment purposes")

(vuln-influence
:initform 0.0
:initarg :vuln-influence
:accessor vuln-influence
:documentation "weight of this vulnerability to the whole,)

(dist-audit
:initform 1.0
:initarg :dist-audit
:accessor dist-audit
:documentation "Degree with which vuln affects audit")

(dist-recover
:initform 0.0
:initarg :dist-recover
:accessor dist-recover
:documentation "Degree with which vuln affects recovery")

(dist-access
:initarg :dist-access
:initform 0.0
:accessor dist-access
:documentation "Degree with which vuln affects access*)

(dist-media
:initform 0.0
:initarg :dist-media
:accessor dist-media
:documentation "Degree with which vuln affects media control")

(dist-os
:initform 0.0
:initarg :dist-os
:accessor dist-os
:documentation "Degree with which vuln affects operating system*)

(dist-configuration
:initform 0.0
:initarg :dist-configuration
:accessor dist-configuration
:documentation "Degree with which vuln affects configuration")

(dist-documentation
:initarg :dist-documentation
:initform 0.0
:accessor dist-documentation
:documentation "Degree with which vuln affects documentation")

(vuln-present
:initform t
:initarg :vuln-present
:accessor vuln-present
:documentation "Is the vulnerability present")

Figure 9. CLOS Object Structure

48

To actually determine the contribution of a vulnerability to a functional area, the product

of the vulnerability influence and the distribution value for that functional area was calculated.

Then based on these contributions, the average contribution and standard deviation were calculated

for the data sets. The contribution values were then sorted and the vulnerabilities in or matching

the top 10% of the contributors were identified as critical. The possibility exists for a larger

number than 10% to be identified as critical. This would occur as a result of contribution values

tying for inclusion in the top 10%. Since there is no reason to discriminate against these value

based solely on position within the sorted contributions, they are included in the critical

vulnerabilities.

The vulnerabilites were also grouped by units of standard deviation. It should be pointed

out that the 10% value and the use of standard deviation are arbitrary thresholds. It was necessary

to establish some threshold in order to determine critical vulnerabilities.

4.3 Qualitative Method using Fuzzy Logic

4.3.1 Fuzzy Math. In order to make comparison between the methods, the same type of

information generated by the quantitative method was desired. To calculate the influence

contributions, it is necessary to multiply the influence value for each vulnerability by the

distribution values given. This was done using a table lookup. The lookup tables for the addition

and multiplication of fuzzy values are given in Tables I and 2 respectively.

As mentioned in the previous chapter, calculation of a weighted average is impossible with

linguistic terms. In order to calculate an average contribution for each functional area, the sum of

the contributions was normalized by the sum of the vulnerbility influences.

49

Just like in the quantitative method, the vulnerabilities in or matching the top 10% of the

contributors were identified as critical along with those vulnerabilities in or matching the top 10%

of more than one functional area. Again, ties are handled by being included in the identification of

critical vulnerabilities. The vulnerabilities were also grouped by linguitic value in order provide

additional insight into the structuring of vulnerabilities for each functional area. This grouping of

vulnerabilities was based on linguistic values. Also shown on the output is the number of each

linguistic value occurring as a contribution value to a specific functional area. This data is

provided to show the range of values occurring within each functional area.

Although I implemented a version of Schmucker's method and attempted to execute this

method against a sample of 50 vulnerabilities, this method never successfully completed execution.

The problem was not with the implementation, but combinatorial explosion. After running for over

24 hours, the Schmucker method would consistently cause out of memory errors. As such, I was

never able to acquire results using this method on a complete sample of vulnerabilities.

As mentioned in the previous chapter, these lookup tables were built based on the majority

behavior of the indicated operation. There were a few cases where the majority was only slightly

larger than the minority. It is possible because of this to see slightly unexpected behavior if this

table lookup method is compared to a numeric method. If the numeric values fall near the mapping

boundaries, the linguistic result may be off by at most one category. In no case did the boundary

shift by more than one fuzzy term.

4.4 Summary

This chapter described how each of the vulnerability analysis methods were implemented.

Also discussed was how the critical vulnerabilities were identified and how the vulnerabilities were

50

grouped according to units of standard deviation in the quantitative case mnd linguistic terms in the

qualitative case. Finally, how the lookup tables were built and problems with boundary conditions

were discussed.

Add VERYLOW LOW MEDLOW MEDIUM MED HIGH HIGH VERYHIGH

VERYLOW VERYLOW LOW MEDLOW MEDIUM MEDHIGH HIGH VERYHIGH

LOW LOW MEDLOW MEDIUM MEDHIGH HIGH VERYHIGH VERYHIGH

MEDLOW MEDLOW MEDIUM MEDHIGH HIGH VERYHIGH VERYHIGH VERYHJIGH

MEDIUM MEDIUM MEDHIGH HIGH VERYHIGH MEDHIGH VERYHIGH VERYHIGH

MED HIGH MEDHIGH HIGH VERYHIGH [-MEDHIGH IVERYHIGH- -VERYHIGH IVERYHIGH

HIGH j HGH VERYHIGH VERYHIGH VERYHIGH VERYHGH VERYHGH VERYHIGH

VERYHIGH jVERYHIGH VERYHIGH VERYHIGH VERYHIGH VERYHIGH VERYHIGH VERYIHGH

Table 1. Addition of Fuzzy Sets (Linear Mapping)

Muldl VERYLOW LOW MEDLOW MEDIUM MEDHIGH HIGH VERYHIGH

V:ERYLO0W VERYLOW VERYLOW VERYLOW VERYLOW VERYLOW VERYLOW VERYLOW

LOW VERYLOW VERYLOW VERYLOW VERYLOW VERYLO)W LOW LOW

MEODLW VERYLOW VERYLO)W VERYLOW LOW LOW LOW MEDLOW

MEDIUM VERYLOW VERYLOW LOW LOW MED1IGH MEDLOW MEDIUM

MEDHIGH VERYLOW VERYLOW LOW MEDHIGGH MEDLOW MEDIUM MEDHJIGH

HIGH VERYLOW LOW LOW MEDLOW MEDIUM MEDHIGH HIGH

VERYHIGH VERYLOW LOW MEDILOW IMEDIUM IMEDHIGH HIGH VERYHIGH

Table 2. Multiplication of Fuzzy Sets (Linear Mapping)

51

V Results

5.1 Introduction

This chapter will outline the results obtained from the methods and implementations given

in Chapters 3 and 4. Although the Schmucker method was implemented, that method will not be

used for comparison purposes due to its significant problem with scalability. The discussion of the

comparison results will only be based on the quantitative analysis method using statistical analysis

and the qualitative analysis method using the table lookup of fuzzy arithmetic functions.

Given that there is no industry standard with which to compare these results, some of the

comparisons given below have to be subjective in nature. When a subjective comparison is made,

an attempt is made to explain the basis for the comparison and how the results were interpreted.

5.2 Hypothesis (restated)

The hypothesis of this thesis is stated in two parts: that a qualitative analysis approach to

vulnerability analysis is as effective and efficient as a quantitative approach and that the qualitative

approach provides the security analyst with intuitive information not readily available in

quantitative approaches. Effectiveness is the ability to provide reasonable categorizations of

identified vulnerabilities based on influence contributions to a functional area. It is measured with

regard to a method's ability to categorize vulnerabilities into reasonable clusters and how easy it is

for that method to be used. Efficiency is measured with regard to processing time and scalability

of the method.

52

5.3 Effectiveness

When evaluating any method to perform a specific task, it is essential to determine the

effectiveness of that method in performing the task. For computer security vulnerability analysis, a

method is effective if it can categorize or cluster the vulnerabilities into reasonable groupings based

on importance or impact. This ability is necessary, but it is not sufficient for determining

effectiveness. The ease with which the method can be applied must also be considered. A method

may be very effective at performing categorizations, but if it requires extensive data setup or the

results of the method are difficult to interpret, most would agree that the method loses its

effectiveness.

5.3.1 Ability to Categorze Vulnerabilihies The measurement of the ability of a given

method to categorize vulnerabilities is divided into four main concerns: accuracy, precision,

generation of distinctions, and evaluation of close results. Most of these concerns are evaluated on

a subjective basis and the evaluation may depend on the specific application of the method.

5.3.1.1 Accuracy. A concern with any method is the accuracy of the results. A

true determination of accuracy requires that an accepted method be the baseline to compare the

results of other methods against. This presented an insurmountable problem as there is no industry

or academic standard method.

However, a subjective determination of accuracy was possible by looking at broad

clusterings of the vulnerabilities. In this, I sought to determine if those vulnerabilities that were on

the high end of importance scale for one method were also on the high end for the other method.

Note that this does not imply that the actual order of vulnerabilities is the same for both methods,

only that the broad clusterings were similar. Given this subjective method, the two methods

53

produced comparable broad clusters (see Figures 10 and 11). Reviewing the data shown in these

figures shows that vulnerabilities VlOO and V125 and the corresponding vulnerabilities F100 and

F125 were clustered in the top category. Likewise, vulnerabilities V121 and V126 and the

corresponding F121 and F126 were clustered in the lowest category. I cannot say, nor is it

possible to without a baseline standard, that one method is more accurate than the other. I can say,

that based on the subjective broad clusterings, each method appears to have comparable accuracy.

Functional Area: AUDIT
Sigma Group: 1 ==> V100 V125 V131

Sigma Group: 2 > V143 V148 V115 V101 V142 V112

Sigma Group: 3 > V137 V141 V117 V140 V144 V129 V135 V133
V118 V124 V134 V122

Sigma Group: 4 ==> V139 V128 V113 V136 V130 V132 V127 V114
Vlll V105 V108 V107 V106 Vl19 Vl10 V147
V138 V120 V145 V103 V146 V116 V102 V149
V109 V104 V123 V126 V121

Figure 10. Clustering of Audit Functional Area (Quantitative)

Functional Area: AUDIT
Importance: M ==> F125 F100

Importance: ML F=> 101 F112 F131 F143 F148

Importance: L F> 122 P142 F115 F124 F144 F137 F141 F117
F133 F135 Fl18 F129 F134 F140

Importance: VL ==> F127 F106 F113 F108 P128 F132 F110 F136
F139 F105 Flll F114 F119 F102 F109 F130
F107 F103 F138 F146 F104 F116 F120 F147
F123 F126 F145 F149 F121

Figure 11. Clustering of Audit Functional Area (Qualitatine)

5.3.1.2 Precision. Another concern in evaluating the effectiveness of a method

is precision. Precision differs from accuracy and the two should not be confused. Accuracy

54

implies a degree of correctness, whereas precision is the degree of resolution. For instance, 3.14

and 3.1459265 are both estimates of the value of pi. Neither is completely accurate, but the

second value is more precise. So is 1.5923111, but it is obviously less accurate. This illustrates

that high precision does not imply high accuracy.

In evaluating the precision of the two methods, most would agree that a numeric solution

would have a higher degree of precision over a non-numeric solution. This can be seen in that the

numeric solution has, at least theoretically, an infinite degree of precision, while the non-numeric

solution is limited to the resolution provided by the linguistic terms.

Since the numeric solution is more precise, it could be inferred that this added precision

also adds information to the results and as such, this added information should be usable. The

problem with making this inference is that the original input to the problem, the subjective

assignment of influence and distribution for each vulnerability, lacks precision.

In the numeric method, the analyst has an infinite range of values between 0 and 1 that can

be assigned to each influence or distribution value. While this allows the analyst to provide a

higher degree of resolution of the input, it does not necessarily add information to the analysis. For

example, the analyst is providing influence values to two vulnerabilities, and while they both have

a subjective rating of medium, the analyst wants one to be slightly more medium than the other.

She therefore assigns one an influence value of 0.51 and the other an influence value of 0.55. Also

assume that for a given functional area, both vulnerabilities have a distribution value of 1.0. When

all of the calculations are performed and the vulnerabilities have been clustered, it is possible that

the two vulnerabilities will fall into the same cluster.

In reality, providing this level of precision on the input has not affected the overall

assignment of the vulnerabilities to a specific cluster. Likewise, it is possible that increasing the

resolution of the output values will not change the clustering. What increasing the precision in the

55

data input and the results output would do is provide a false sense of improved accuracy. The case

where the two vulnerabilities do fall into different clusters will be discussed below concerning

evaluation of close results.

The level of precision provided by a method is directly affected by the true precision of the

data input into that method. If the analysis starts with inherently imprecise data, it is not

reasonable that the true accuracy of the results will increase just because the data is expressed in

terms of increased precision. While it is true that the numeric method has a greater possible

precision due to increased resolution of the input values, I contend that this increased precision

simply leads to a false assumption that the results are more accurate. Simply put, subjective inputs

lead to subjective outputs and precise subjective inputs lead to precise subjective outputs. The key

point is that the outputs, regardless of how precise the inputs, is still subjective.

5.3.1.3 Generation of Distinctions. In performing the categorization of

vulnerabilities, it is necessary to generate distinctions among data values. By generating these

distinctions, the method is able to group the information into clusters. The concern here is how

effective are the two methods at generating these distinctions.

In the non-numeric case, the most obvious distinction is by linguistic value. Grouping the

analysis results by linguistic values provides an intuitive clustering of the information. For

instance, it make sense to group all of the vulnerabilities with a VERYHIGH influence contribution

together, then the vulnerabilities with a HIGH influence contribution, and so forth. Even within

these clusters, further distinctions can be made based on linguistic values by grouping the

vulnerability influence values that are the same or by grouping the vulnerability distribution values

for a specific functional area. The distinctions are appropriate given the desired goal of trying to

cluster all of the vulnerabilities by importance.

56

In the numeric case, there is no obvious distinction. Any distinction made is arbitrary

since the range of possible values is infinite. Some possible distinctions that could be made would

include grouping the data by units of standard deviation (the choice used in this thesis), developing

confidence intervals, or calculating histogram clusterings. There are a plethora of statistical

methods that could be used to cluster the vulnerability data, but none is sufficient for all

circumstances. This is one of the primary reasons that no industry standard method has been

developed.

Again, it must be stressed that the original input values to either method are subjective and

as such the output of either method is subjective. Any distinctions made between adjacent data

points in the numeric method are arbitrary.

For instance, assume an university chooses its distinguished graduates from the students

within the top ten percent of the graduating class's grade point average (GPA). The cutoff, as

determined by numeric methods is 3.9781. All students whose GPA is 3.9781 and greater are

classified as distinguished graduates. Assume another student has a GPA of 3.9780. Using a

strictly numeric cutoff eliminates this student from being a distinguished graduate. Also note, that

if the precision of the cutoff was reduced to 3.978, and all GPAs rounded to three digits, the

student would be selected. Of course, this selection of three significant digits is just as arbitrary as

four digits and the same boundary condition occurs for someone with a GPA of 3.9774.

The purpose of this example is to show how placing an arbitrary and fixed cutoff to the

data being used can lead to undesired results. In performing the distinguished graduate selection,

the university's real goal was to reward those students whose academic achievement place them in

or very near the top ten percent of their class.

5.3.1.4 Evaluation of Close Results. The examples given in the previous

section bring to light the problem of how to evaluate close results. Close results are those results

57

that fall on or near the distinction cutoffs being used. In the case of non-numeric method, it is

adequate to say that a result is close to another if they have the same linguistic values. This is

adequate because the linguistic values represent ranges of values and these ranges are fairly large.

This has the effect of enforcing the desired behavior that if two vulnerabilities are close in

importance, then they should be considered together and it is not reasonable to distinguish between

them.

In the numeric case, as was demonstrated by the above examples, two values can be

numerically close and still fall into different clusters. This is true even if a histogrammatic

program is used to try and determine the 'natural' clusters. This is caused by the exactness of the

numeric method where each value used is in effect its own cluster. Because of the infinite number

of individual clusters, the numeric method will apply the chosen arbitrary cutoff between two

vulnerabilities. In reality, these two vulnerabilities should be considered together, but the numeric

method may be unable to detect this closeness and arbitrarily applies the cutoff.

5.3.2 Ease of Use Ease of use can only be measured subjectively. What is easy for one

person to use, may be difficult for another person. However, even with this in mind, there are

certain attributes of each method that are demonstrative of their ease of use. The most important

measure of ease of use is the ease of interpreting the data.

5.3.2.1 Interpretation of Data. As with any product, the main goal is to make

meaningful and consistent interpretations of the output results. A consistent interpretation of the

results implies that a single user construes the same information from the results every time the

results are reviewed. A consistent interpretation also implies that there lacks ambiguity in what the

results mean. A meaningful interpretation is much harder to define, but can be seen as whether the

analyst must try and guess what the meaning of the values output represent. Another definition of

meaningful interpretation could be whether the data has an implied semantic meaning.

58

The first inu•rpretation of data is made with regard to the input data. It is essential that the

input data be generated and interpreted consistently. Assume for the numeric case, the user is

asked to assign an influence value to a vulnerability with the possible choices being between 0 and

100, and the user selects 56. Would there have been any significance to choosing 56 over 57? Not

in reality, unless the equations used to perform the calculations are extremely sensitive to small

changes in input. As such a sensitive system would probably not be fielded in the first place, I

assert there is no significant diffe:ence in choosing 56 over 57 in the preceding question.

Some might argue that the user has too many choices, so the choices are lowered from 0 to

100 to the range 0 to 9. Here we would expect that there is a significant difference between 5 and

6. Lowering the number of choices improved the resolution of choice significance. What then is

the significance of the user assigning 5 (from the choice of 0 to 9) to an influence value? This

could now be interpreted to mean that the vulnerability has a medium influence value. I contend

that the user should input the value MEDIUM that conveys the semantic meaning intended by the

user.

The same semantic difficulties arise in interpreting system output. After processing all of

the identified vulnerabilities using whatever numeric methods chosen, the system generates an

overall vulnerability rating of 8 from the range of 0 to 9. This could be interpreted to mean a high

vulnerability rating if the value of 9 represents the high end of the scale. It could also be

interpreted to mean a low rating if 9 represents the low end of the rating scale. If on the other

hand, the system indicates that the overall vulnerability rating is HIGH, there is little left to

interpret.

In the numeric case, the user is presented with a list of statistical values that attempt to

represent how the vulnerabilities are important to each functional area. In most cases, the analyst

makes a internal conversion from the numeric values to their intended linguistic meaning. Internal

59

conversion implies that the values are converted in the analyst head as opposed to a algorithm

implemented on a computer. The analyst would look at the data and build internal subjective

scales to evaluate the meaning of the numeric values. The inconsistency arises when a few days,

months, or years later, the same analyst reviews the output results. It is up to the analyst to try and

remember the exact interpretation made when the results were previously reviewed.

There can also be inconsistencies when multiple analysts are reviewing the numerical

information. It is very unlikely that any two analysts would generate the same internal scales to

evaluate the meaning of the numeric values.

In the non-numeric case, there is a fairly standard meaning associated with each of the

linguistic terms. These meanings are fairly standard in that most security analysts would have

similar internal representations of the concepts HIGH, MEDIUM, and LOW. There may be some

latitude in the specific meanings associated with compound linguistic terms such as VERYLOW

and MEDIUMHIGH, but the general meanings associated with these types of terms should be

consistent within a particular domain.

Looking at the non-numeric data, the analyst is not left to speculate as to whether a

vulnerability has a HIGH or VERYHIGH rating; the data simply states the value. The analyst is

also not required to remember from day to day, any numeric range of values that constitute a

particular linguistic term.

It is in this category of ease of interpretation of data that the non-numeric method excels

the greatest over the numeric method.

60

5.4 Efficiency

5.4.1 Timed Performance. The timed performances for each of the methods were

comparable. The actual times, in seconds, are shown in Table 3 and plotted in Figure 12. The

performance was almost identical for the 50 vulnerability sample, while the numerical method was

better for the 120 data sample. The 198, 250, 320, and 400 sample data sets are combinations of

the smaller sets generated only for the purpose of timing. The data shows that the two methods

perform comparably and therefore, for vulnerability analysis, neither method is a clear winner.

5.4.2 Scalability. As mentioned in previous chapters, both methods should demonstrate

linear scalability. This is demonstrated by Figure 12. It should be noted that a portion of the time

shown in Table 3 can be attributed to programming overhead that is not related to data set size.

Given the linearity of each method, either would be appropriate for vulnerability analysis.

5.5 Summary

The above results demonstrate that both methods perform equally well with regard to

timed performance, and scalability. However, there are significant differences in the ability of the

two methods to categorized the vulnerability information and the ease of which the data cap be

interpreted.

For the average user, the fuzzy analysis method has the advantage here. The thought

process associated with assigning influence values and how these influence values are distributed is

much more natural with the fuzzy logic approach. Also, the analysis of the end product is more

61

intuitive when using linguistic terms as opposed to numerical values. This advantage is born out

by a comment included in Schmucker:

A higher degree of response consistency over trials was found to occur if the
subject is allowed to give an imprecise verbal response about a fuzzy (concept)
than if he is forced to give a precise "grade-of-membership answer [Kochen,
1975]. (Schmucker84:35)

5 Runs Per Set (size) (50) (120) (198) (250) (320) (400)

Fuzzy Best 0.69 1.60 2.96 3.62 4.84 6.40
Fuzzy Worst 0.76 1.66 3.20 3.68 4.89 6.50
Fuzzy Average 0.72 1.63 3.08 3.64 4.87 6.45

Numeric Best 0.68 1.12 3.12 3.64 4.32 6.78
Numeric Worst 0.77 1.19 3.59 3.95 J 4.47 7.06
Numeric Average 0.72 1.16 3.40 3.76 1 4.39 6.90

Table 3. Timed performance (Numerical vs. Fuzzy)

7
6
5"

Time 4 - Fuzzy
3 Numerc
2
1

0 I I

0 100 200 300 400

Sample Size

Figure 12. Timed performance (Numerical vs. Fuzzy)

62

VI Condusons and Rndstlons

6.1 Conclusions

This thesis has demonstrated the feasibility of using a non-traditional method to process

and analyze computer security vulnerabilities. It has demonstrated that not only is this non-

traditional method comparable to a similarly structured quantitative method, but with regard to

ease of use, better. Although fuzzy logic was the non-traditional method used in this thesis, other

methods, such as those listed in chapter 2, could possibly be applied.

The use of linguistic terms allows the end user to make meaningful evaluations of

vulnerability influence and impact. Unlike numbers, a linguistic term has a semantic meaning as

well as representing a quantity.

6.2 Project Recommendations

This thesis recommends the use of a qualitative analysis method to perform vulnerability

analysis. This recommendation is based on the ease of use and intuitive nature of qualitative

analysis methods such as fuzzy logic.

6.3 Future Enhancements and Phases

A future enhancement and continuation of this work would be to create an inference

mechanism to combine the results of each functional area. This inference mechanism could be in

63

the form of rules that would direct how to interpret the results. The final output of such an

inference mechanism could be a single vulnerability rating or score.

As the first phase of a multi-phase research project, this thesis lays the groundwork for

building a fully automated computer security risk analysis system. In addition to investigating and

implementing the recommendations listed in the following section, future phases of the research

project include addressing implementation tradeoffs between risk analysis capabilities and host

architecture constraints (e.g., memory limitations and microprocessor performance), developing

adaptive analysis techniques to allow for and take advantage of new technology, and generation of

new reasoning with uncertainty methods.

This thesis has addressed only one specific part of automating computer security:

specifically, whether a qualitative or quantitative analysis method is more applicable to

vulnerability analysis. As the use of automated methods to evaluate computer security is still in its

infancy, thw possibilities for further research are almost limitless. The following paragraphs

suggest a few of these areas where additional work could, and probably should, be done.

The vulnerability assessment methods explored in this thesis could be expanded to include

combinations of multiple vulnerabilities. This thesis dealt with evaluating individual vulnerabilities

that were independent of each other. Future research should be conducted which will allow for

combinations of vulnerabilities to be assessed. An example would be a system that lacks

passwords and the facility where the system is located is not locked. Each of these alone has a

vulnerability rating associated with it, but the combined effect of both vulnerabilities may have a

much higher rating than either alone.

Another area that should be explored is the generation of other non-numeric analysis

methods that provide linear, or very near linear, performance. Along with this research would be

analysis into the number of linguistic terms necessary to adequately represent the range of possible

64

vulnerability levels and analysis into how the size and structure of the lookup table affects

predictability of results.

Effort should be expended towards the development of an expert system that is capable of

making the necessary recommendations for vulnerability correction and threat elimination.

Currently, the USAF depends on experts at AFCSC and the CSOs to determine the necessary steps

to correct vulnerabilities and eliminate threats. Codifying the expertise of these individuals into a

portable expert system would allow new and less experienced CSOs to provide enhanced and

reliable protection of their resources.

Work could be done on using hardware and software design specifications to determine

security flaws. This would allow for security flaws to be corrected prior to the system being

implemented. Most hardware and software systems are built with performance and ease of use as

driving factors. Security is often not considered until it is too late to correct a flaw. Using

information from the specification and design phases, an assessment could be performed to identify

possible security weaknesses prior to the system being built. This earlier assessment would allow

the system to be built with most if not all of the security flaws corrected.

Future work could be put forth on developing a system capable of performing threat

assessment to determine if known threats could penetrate the current safeguards. This research

would involve building a simulation model of each system's safeguards and then applying the

known threats to the model. As a continuation of the threat assessment concept, automatic threat

scenario generation could be developed that would generate a possible sequence of events leading

to the compromise of a computer system. The only drawback to this type of research would be the

sensitivity. It's obvious that any system that generates and evaluates threat scenarios would have

to be highly classified.

65

Appendix A: Computer Programs

A-I Quantitative Method using Statistical Analysis

The following code excerpts are provided to illustrate high level functionality of the

implemented code.

Functions used to generate statistics

(defun sum-eml (slot-name)
"Calculate influence values for a particular functional area"
(setf suml 0)
(mapc #'(lambda (x)

(progn
(cond
((vuln-present (eval x))
(setf value (get-value (eval x) slot-name))
(setf value2 (vuln-influence (eval x)))
(setf suml (+ sumi (* value value2))))
(t (setf suml (÷ 0 suml))))

vuln-list)
suml)

(defun sum-em2 (slot-name)
"Calculate the squared influence values for a particular functional area"
(setf sum2 0)
(mapc #'(lambda (x)

(progn
(cond
((vuln-present (eval x))
(setf value (get-value (eval x) slot-name))
(setf value2 (vuln-influence (eval x)))
(setf sum2 (+ sum2 (expt (* value value2) 2))))
(t (setf sum2 (+ 0 suml))))))

vuln-list)
sum2)

(defun sum-squared ()
"Initialize variable for sum of each slot"
(setf ssum (mapcar #'sum-em2 dist-slots)))

(defun rawsuml ()
"Initialize variable for sum of each slot"
(setf inf-sum (sum-em Ivuln-influence))
(setf areas (mapcar #'sum-eml dist-slots))
(setf sum-areas (apply #'+ areas))
(setf areas-pct (mapcar #,(lambda (x) (/ x sum-areas)) areas))
(setf sum-areas-pct (apply '+ areas-pct))

66

areas)

(defun calc-inf 0)
"Calculate the influence f or each functional area"
(setf inf-calculated t)
(preponderance) ; generate list of # vuin present in each area
(rawsuml) ; generate raw weighted sums
(setf area-avgs (mapcar I/ areas prepond))
(sum-squared)
(setf variance (mapcar # (lambda (n x x2)

(progn

(-x2 (* UI 1 n)
(expt x 2))))

prepond areas ssum))
(setf stdev (mapcar #Isqrt variance))

Functions used to generate clwsterings

(defun count-sd-groups (slot-name)
(cond
((eval inf-calculated) nil)
(t (calc-inf) (gen-sorted-inf-list)))
(setq posy (position slot-name dist-slots))
(setq maxvuln (car (nth posy sorted-inf-list)))
(setq maxval (* (get-value (eval maxvuln) slot-name)

(vuln-influence (eval maxvuln))))
(setq sd (nth posy stdev))
(multiple-value-setq (sdgroups junk) (ceiling (/ maxval sd)))
sdgroups)

(defun group-sd-vals (slot-name)
(setq groups (count-sd-groups slot-name))
(setq posy (position slot-name dist-slots))
(setq maxvuln (car (nth posy sorted-inf-list)))
(setq maxval (* (get-value (eval maxvuln) slot-name)

(vuln-influence (eval maxvuln))))
(setq sd (nth posy stdev))
(setf sd-groups (list maxval))
(loop for num from 2 to groups

do
(progn

(setf minval (- maxval sd))
(cond
((< minval 0) (setf minval 0)) (t nil))
(setf sd-groups (append sd-groups (list minval)))
(setf maxval minval))

sd-groups)

(defun count-sd-groups-content (slot-name)
(setq numgrps (count-sd-groups slot-name))
(setq grprngs (group-sd-vals slot-name))
(setq array (make-list numgrps :initial-element 0))
(setq posf (position slot-name dist-slots))
(setq temp-sorted-list (copy-list (nth posf sorted-inf-list)))
(loop for posl from 0 to (1- (length temp-sorted-list))

do
(let*

67

((temp-vuln (nth poo1 tefap-sorted-list))
(valuel (get-value (oval temp-vuin) slot-name))
(value2 (vuin-influence (oval temp-vuin)))
(value3 (* valuel value2))
(posx (position value3 grprngs :test V< :from-end t))

(cond
((null poax) nil)
(t (setf (nth poax array) (1+ (nth posx array)))))

array)

(defun group-sd-content (slot-name)
(setq groups (count-sd-groups slot-name))
(setq arrayl (make-list groups :initial-element nil))
(setq posf (position slot-name dist-slots))
(setq tsl (copy-list (nth post sorted-irif-list)))
(setq total-pos 0)
(setq llist (count-sd-groups-content slot-name))
(setq lfuz (1- groups))
(loop for pool from 0 to lfuz

do
(let*

((inc (nth pool llist))
(start total-pos)
(stop (+ total-pos inc))

(setf (nth posl arrayl) (subseq tal start stop))
(setq total-pos (+ total-pos mnc))

arrayl)

(defun top-portion (slot-name count)
(setq cnt count)
(setq loop-stop 0)
(cond
((oval list-mtf-generated) nil)
(t (gen-sorted-int-list)))

(let*
((posf (position slot-name dist-slots))
(ftsl (copy-list (nth post sorted-mtf-list)))
(last (nth (1- count) ftsl))
(intx (get-value (oval last) 'vuln-intluence))
(valx (get-value (oval last) slot-name))
(prodx (* intx valx)))

(loop while (eq loop-stop 0)
do
(let*

((next (nth cnt ttsl))
(infy (get-value (oval next) Ivuln-influence))
(valy (get-value (eval next) slot-name))
(prody (* inty valy)))

(corid
((eql prody prodx) (setq cnt (1+ cnt)))
(t (setq loop-stop 1)))))

(subseg ftsl 0 cnt)))

(detun top-contrib (
(preponderance)
(setq pcnt (floor (*(car prepond) 0.10)))
(setq all-c (mapcar #'(lambda (x) (top-portion x pcnt)) dist-slots))
(setq candidates (sort

(remove-duplicates (flatten all-c))
string-lesap))

68

(setq withdups (flatten all-c))
(setq candcount (mapcar #,(lambda (x)

(count x withdups)) candidates))
(setq lpos (1- (length candidates)))
(setq tc (make-list 7 :initial-element candidates))
(loop for pos from 0 to lpos

do
(setq tmpval (nth pos candidates))
(case (nth pos candcount)

((7) t)
((6) (setf

(subseq tc 6 7)
(mapcar
#'(lambda (x) (remove tmpval x)) (subseq tc 6 7))))

((5) (setf
(subseq tc 5 7)
(mapcar
#'(lambda Wx) (remove tmpval x) (subseq tc 5 7))))

((4) (setf
(subseq tc 4 7)
(mapcar
#'(lambda (x) (remove tmpval x)) (subseq tc 4 7))))

((3) (setf
(subseq tc 3 7)
(mapcar
#'(lambda (x) (remove tmpval x)) (subseq tc 3 7))))

((2) (setf
(subseq tc 2 7)
(mapcar
#'(lambda (x) (remove tmpval x) (subseq tc 2 7)1))

((1) (setf
(subseq tc 1 7)
(mapcar
#'(lambda Wx) (remove tmpval x) (subseq tc 1 7))))

t)

69

A-2 Qualitative Method using Fuzzy Analysis (Table Lookup)

The following code excerpts are provided to illustrate high level functionality of the

implemented code.

Functions used to generate statistics

(defun sum-eml (slot-name)
"Calculate influence values for a particular functional area"
(setf inf-sum (sum-em 'vuln-influence))
(setf suml Ivl)
(mapc #' (lambda (x)

(progn
(cond
((vuln-present (eval x))
(setf value (get-value (eval x) slot-name))
(setf value2 (vuln-influence (eval x)))
(setf value3 (divf value2 inf-sum))
(setf suml (addf suml (multf value value3))))
(t (setf suml (addf 'vl suml))))))

vuln-list)
suml)

(defun sum-em2 (slot-name)
"Calculate the squared influence values for a particular functional area"
(setf sum2 'vl)
(mapc #'(lambda (x)

(progn
(cond
((vuln-present (eval x))
(setf value (get-value (eval x) slot-name))
(setf value2 (vuln-influence (eval x)))
(setf sum2 (addf sum2 (multf (multf value value2)

(multf value value2)))))
(t (setf sum2 (addf 'vl suml))))))

vuln-list)
sum2)

(defun sort-eml (slot-name)
"Returns a list of nodes sorted by influence given for a given slot"
(setf current-sort-slot slot-name)
(setf sort-list (copy-list vuln-list))
(sort sort-list #'sort-order-inf-value))

(defun sort-order-inf-value (x y)
(let*

((valx (get-value (eval x) current-sort-slot))
(valy (get-value (eval y) current-sort-slot))
(infx (vuln-influence (eval x)))
(infy (vuln-influence (eval y)))

70

(pvx (position valx fuzzy-values))
(pvy (position valy fuzzy-values))
(pix (position infx fuzzy-values))
(piy (position infy fuzzy-values))
(posx (position (multf infx valx) fuzzy-values))
(posy (position (multf infy valy) fuzzy-values)))

(cond
((> posx posy) t)
((and (= posx posy) (> pix piy)) t)
((and (= posx posy) (= pix piy) (> pvx pvy)) t)
((and (= posx posy) (= pix piy) (= pvx pvy) (string-lessp x y)) t)
(t nil))))

(defun rawsuml ()
"Initialize variable for sum of each slot"
(setf inf-sum (sum-em 'vuln-influence))
(setf areas (mapcar #,sum-eml dist-slots))
areas)

Functions used to generate clusterings

(defun count-fuzzy-content (slot-name)
(setq farray (list 0 0 0 0 0 0 0))
(cond
((eval list-inf-generated) nil)
(t (gen-sorted-inf-list)))

(setq posf (position slot-name dist-slots))
(setq f-temp-sorted-list (copy-list (nth posf sorted-inf-list)))
(setq lfuz (1- (length fuzzy-values)))
(loop for posl from 0 to (1- (length f-temp-sorted-list))

do
(let*

((temp-fvuln (nth posl f-temp-sorted-list))
(fvaluel (get-value (eval temp-fvuln) slot-name))
(fvalue2 (vuln-influence (eval temp-fvuln)))
(f-temp-inf (multf fvaluel fvalue2))
(posx (- lfuz (position f-temp-inf fuzzy-values)))

(setf (nth posx farray) (1+ (nth posx farray)))

farray)

(defun group-fuzzy-content (slot-name)
(setq farrayl (list nil nil nil nil nil nil nil))
(cond
((eval list-inf-generated) nil)
(t (gen-sorted-inf-list)))

(setq posf (position slot-name dist-slots))
(setq f-tsl (copy-list (nth posf sorted-inf-list)))
(setq total-pos 0)
(setq llist (count-fuzzy-content slot-name))
(setq lfuz (1- (length fuzzy-values)))
(loop for posl from 0 to lfuz

do
(let*

((inc (nth posl llist))
(start total-pos)
(stop (+ total-pos inc))

(setf (nth posl farrayl) (subseq f-tsl start stop))

71

(setq total-pos (+ total-pos inc))

farrayl)

(defun top-portion (slot-name count)
(setq cnt count)
(setq loop-stop 0)
(cond
((eval list-inf-generated) nil)
(t (gen-sorted-inf-list)))

(let*
((posf (position slot-name dist-slots))

(ftsl (copy-list (nth posf sorted-inf-list)))
(last (nth (1- count) ftsl))
(infx (get-value (eval last) 'vuln-influence))
(valx (get-value (eval last) slot-name))
(prodx (multf infx valx)))

(loop while (eq loop-stop 0)
do
(let*

((next (nth cnt ftsl))
(infy (get-value (eval next) 'vuln-influence))
(valy (get-value (eval next) slot-name))
(prody (multf infy valy)))

(cond
((eql prody prodx) (setq cnt (1+ cnt)))
(t (setq loop-stop 1)))))

(subseq ftsl 0 cnt)))

(defun top-contrib ()
(preponderance)
(setq pcnt (floor (* (car prepond) 0.10)))
(setq all-c (mapcar #'(lambda (x) (top-portion x pcnt)) dist-slots))
(setq candidates (sort

(remove-duplicates (flatten all-c))
#*string-lessp))

(setq withdups (flatten all-c))
(setq candcount (mapcar * (lambda (x)

(count x withdups)) candidates))
(setq lpos (1- (length candidates)))
(setq tc (make-list 7 :initial-element candidates))
(loop for pos from 0 to lpos

do
(setq tmpval (nth pos candidates))
(case (nth pos candcount)

((7) t)
((6) (setf

(subseq tc 6 7)
(mapcar
#'(lambda (x) (remove tmpval x)) (subseq tc 6 7))))

((5) (setf
(subseq tc 5 7)
(mapcar
#(lambda (x) (remove tmpval x)) (subseq tc 5 7))))

((4) (setf
(subseq tc 4 7)
(mapcar
#'(lambda (x) (remove tmpval x)) (subseq tc 4 7))))

((3) (setf
(subseq tc 3 7)
(mapcar
#(lambda (x) (remove tmpval x)) (subseq tc 3 7))))

((2) (setf
(subseq tc 2 7)
(mapcar

72

#,(lambda (x) (remove tspval x)) (aubseq tc 2 7))))
((1) (setf

(subseq tc 1 7)
(mapcar
#'(lambda (x) (remove tmpval x)) (subseq tc 1 7))))

t)

(defun calc-inf 0)
"Calculate the influence for each functional area"
(preponderance) ; generate list of # vuln present in each area
(rawsuml) ; generate raw weighted sums
(setf area-avgs (mapcar '(lambda (x) (divf x inf-sum)) areas))

The following are the fuzzy math functions used to implement the table lookup

Define Fuzzy math functions

(setf fuzzy-values (list 'vl '1 '-1 'm 'mh 'h 'vh))
(setf vl "Very Low")
(setf 1 "Low")
(setf ml "Medium Low")
(setf m "Medium")
(setf mh "Medium High")
(setf h "High")
(setf vh "Very High")

(setf addf-array (append
(list (list 'VL 'L 'ML 'M 'MH 'H 'VH))
(list (list 'L 'ML 'M 'MH 'H 'VH 'VH))
(list (list 'ML 'M 'MH 'H 'VH 'VH 'VH))
(list (list 'M 'MH 'H 'VH 'VH 'VH 'VH))
(list (list 'MH 'H 'VH IVH 'VH 'VH 'VH))
(list (list 'H 'VI 'VH 'VH 'VI 'VH . VHW))
(list (list 'VH 'VH 'VH 'VH 'VH 'VH 'VH))))

(setf multf-array (append
(list (list 'VL 'VL 'VL 'VL 'VL 'VL 'VL))
(list (list 'VL 'VL 'VL 'VL 'VL 'L 'L))
(list (list 'VL 'VL 'VL 'L 'L 'L 'ML))
(list (list 'VL 'VL 'L 'L 'ML 'ML 'M))
(list (list 'VL 'VL 'L 'ML 'ML 'M 'MH))
(list (list 'VL 'L 'L 'ML 'M 'MH 'H))
(list (list 'VL 'L 'ML 'M 'MH 'H 'VH))))

(setf divf-array (append
(list (list 'VH 'ML 'L 'VL 'VL 'VL 'VL))
(list (list 'VH 'VH 'MH 'ML 'ML 'L 'L))
(list (list 'VH 'VH 'VH 'MH 'M 'M 'ML))
(list (list 'VH 'VH 'VH 'VH 'IH 'MH 'M)
(list (list 'VI 'VH 'VH 'VH 'VHI 'IH 'MH))
(list (list 'VH 'VH 'MH 'VH 'VH 'VH 'H))
(list (list 'VH 'VH 'VH 'VH 'VH 'VH 'VH))))

(setf subf-array (append

73

(list (list 'VL 'VL 'VL 'VL 'VL 'VL 'VL))
(list (list IL 'VL 'VL 'VL 'VL 'VL VL))
(list (list 'ML 'L 'VL 'VL 'VL 'VL 'VL))
(list (list 'M 'ML 'L 'VL 'VL 'VL VL))
(list (list 'MH 'M ML 'L VL 'VL VIL))
(list (list 'H 'MH 'M 'L *L VIL VIL))
(list (list 'VH 'H 'H 'M 'M 'L IVL))))

(defun addf (valuel value2)
"Will return the result of 'adding' the two fuzzy values"
(setf posl (position valuel fuzzy-values))
(setf pos2 (position value2 fuzzy-values))
(nth pos2 (nth posl addf-array)))

(defun subf (valuel value2)
"Will return the result of 'subtracting' the two fuzzy values"
(setf posl (position valuel fuzzy-values))
(setf pos2 (position value2 fuzzy-values))
(nth pos2 (nth posl subf-array)))

(defun multf (valuel value2)
"Will return the result of 'multiplying' the two fuzzy values"
(setf posl (position va±iel fuzzy-values))
(setf pos2 (position value2 fuzzy-values))
(nth pos2 (nth posl multf-array)))

(defun divf (valuel value2)
"Will return the result of 'dividing' the two fuzzy values"
(setf posl (position valvel fuzzy-values))
(setf pos2 (position valhe2 fuzzy-values))
(nth pos 2 (nth posl divf-array)))

74

Appendix B: Sample Program Output

B-I Program Output- Numeric Method (50 Samples)

Results of Vulnerability Processing

Total number of Vulnerabilities Processed: 50

Statistical Results by Functional Area

Audit Recovery Access Media O/S Config Docs

Influence 7.2378 7.3191 17.2539 6.0062 12.5051 12.2245 15.8863
Average 0.1448 0.1464 0.3451 0.1201 0.2501 0.2445 0.3177
Std Deviation 0.1268 0.1530 0.2478 0.1601 0.2169 0.1757 0.2192

Influence-Pct 9.23% 9.33% 22.00% 7.66% 15.94% 15.59% 20.25%

Significant Contributors to each Functional Area

Audit V100 V125 V131 V143 V148
Recovery V112 VIl0 V125 V131 V148
Access V125 V142 V106 Vi01 V113
Media V112 V106 VII0 V125 VIII
Operating Sys. V125 VI01 V115 V100 V144
Configuration V143 V131 V137 V142 V125
Documentation V127 V125 V115 V142 V131

Vulnerabilities Contributing to more than one Functional Area

Two Areas V100 Vl01 V106 V110 V112 V115 V125 V131
V142 V143 V148

Three Areas V125 V131 V142
Four Areas V125 V131
Five Areas V125
Six Areas V125
Seven Areas V125

75

Vulnerabilities Rankings for Each Functi.onal Area

Functional Area: AUDIT
Sigma Group: 1 > V100 V125 V131

Sigma Group: 2 => V143 V148 V115 V101 V142 V112

Sigma Group: 3 > V137 V141 V117 V140 V144 V129 V135 V133
Vl18 V124 V134 V122

Sigma Group: 4 ==> V139 V128 V113 V136 V130 V132 V127 V114
V111 V105 V108 V107 V106 Vl19 V110 V147
V138 V120 V145 V103 V146 Vi16 V102 V149
V109 V104 V123 V126

Functional Area: RECOVER

Sigma Group: 2 => V112

Sigma Group: 3 ==> Vl10 V125 V131 V148 V100 V111

Sigma Group: 4 > V102 V101 V103 V117 V142 V140 V144 V115
V105 V143 V135 V137

Sigma Group: 5 ==> V124 V141 V104 V133 V113 V118 V139 V122
V132 V129 V130 V107 V128 V136 V138 V121
V127 V123 V145 Vi14 V108 V146 V119 V134
VIl6 V149 V120 V147 V126 V109

Functional Area: ACCESS
Sigma Group: 1 ==> V125 V142 V106 V101 V113 V112 V143

Sigma Group: 2 > V115 V131 V137 V148 V144 V141 V128 V124
V100

Sigma Group: 3 > V117 V132 V135 V114 Vi10 V139 V129 V133
V119 V140 V118 V122 V111 V105 V102 V136
V108 V103 V130

Sigma Group: 4 > V138 V134 Vl16 V104 V146 V149 V107 V109
V145 V127 V147 V120 V121 V123

Functional Area: MEDIA

Sigma Group: 1 ==> V112

Sigma Group: 2 => V106

Sigma Group: 3 > Vl10 V125

Sigma Group: 4 ==> V1ii V102 V108 V109 V119 V105 V135 V148
V107 V131 V140 V146 V100

Sigma Group: 5 > V117 V115 V104 VI13 V101 V137 V143 V122
V133 V138 V142 V129 V127 V130 V114 V144
V121 V124 V139 Vi18 V134 V141 V132 V120
V118 V126 V145 V123 V136 V147 V103 V149

76

Functional Area: OS

Sigma Group: 1 > V125 Viol V115 V100 V144

Sigma Group: 2 ==> V124 V131 V143 V127 V148 V142 V122

Sigma Group: 3 ==> V117 V137 V112 V141 V128 V140 V133 V132
V135 V129 V109 V106 V118 V139 V119

Sigma Group: 4 ==> Vl10 V113 Vili V130 V136 V114 V108 V107
V138 V149 V120 V146 V103 V105 V147 V102
V145 V116 V104 V134 V126 V123

Functional Area: CONFIGURATION

Sigma Group: 1 ==> V143 V131 V137 V142 V125 V148 V128 V115

Sigma Group: 2 ==> V101 V141 V113 V106 V112 V124 V100 V117

Sigma Group: 3 ==> V135 V140 V114 V133 V129 V132 V144 V122
V118 V139 V119 Vill Vl10 V103 V130 V136
V108 V138 V146 V105 V102 V109 V107 V149

Sigma Group: 4 ==> V104 V127 V120 V145 V147 V116 V134 V121
V126

Functional Area: DOCUMENTATION
Sigma Group: 1 > V127 V125 V115 V142 V131 V143

Sigma Group: 2 ==> V101 V106 V137 V148 V113 V128 V141 V100
Vi12

Sigma Group: 3 ==> V114 V124 V144 Vl17 V132 V135 V129 V140
V133 V108 V109 Vl18 V122 V119 Vill V139
V130 Vl10

Sigma Group: 4 ==> V138 V103 V116 V107 V134 V104 V136 V102
V105 V146 V149 V120 V145 V147 V121 V123

77

List of Vulnerabilities

Vi00 The system does not have audit trails.

V101 During logon, the system does not tell the user the date and
time the ID was last used

V102 Off-site backup doep not exist for critical files

V103 Off-site storage is not a secure area

V104 Procedures have not been designed to insure only authorized
personnel have access to the storage media

V105 Storage media reserved for use by a contractor is not clear of
all classified or sensitive data

V106 External tape or disk identification labels do not include

security classification

V107 Media records are not kept.

V108 Inventory records do not show media on hand in the library

V109 Guidelines and controls have not been established to designate
an individual as disk manager for each computer system

V110 Backup is not available for power (generator or batteries)

V111 Backup is not available for air conditioning

V112 Backups of software for critical applications are not compared
to working copies to detect unauthorized changes.

V113 Security test and evaluation is not performed prior to

certification

V114 A contingency plan does not exist.

V115 System documentation does not include detailed information
concerning software use for the user

Vl16 Security documentation does not include configuration management
controls

V117 For PC (single-user) systems, files of different classifications
are not limited to authorized users

V118 Classification of software does not take into account algorithms
or processes that may be used

Vl19 Classification of media is not downgraded by reviewing all
information

V120 For periods processing the system does not use separate copies
of the operating system

V121 Protection of ADP magnetic storage media does not include
safeguarding media according to the highest classification ever
recorded

V122 The operating system does not automatically label all
human-readable output with its sensitivity

78

V123 Main memory and storage devices are not cleared before being
assigned to another individual or process.

V124 The operating system does not require users to identify
themselves before performing any actions

V125 The operating system does not use a protected mechanism (e.g.,
passwords) to authenticate user identity

V126 Testing is not performed to insure that there are no ways for an
unauthorized user to gain access to the system

V127 Documentation does not exist that describes operating system
protection mechanisms

V128 Documentation does not exist that outlines the test plan,
procedures and results for security testing

V129 A trusted facility manual does not include procedures for the

operator to operate the facility in a secure manner

V130 Passwords are not randomly generated

V131 The password administrator's responsibilities do not include
sole access to the password file

V132 . Requirement(s) not met are that private data passwords are known
only by the creator

V133 Password management and control does not consist of a single
point of contact

V134 -Audit trails for password distribution and change are not in

existence.

V135 Passwords are not changed at least every three months

V136 Compromised or mishandled passwords are not changed at least
within one working day

V137 Personal passwords are not deleted within three work days when a
user leaves the organization

V138 Group passwords are not changed within three work days when a
user leaves the organization.

V139 Resource protection measures do not include making personnel
responsible for protection of government property

V140 The keys and combinations of the room are not restricted to a
limited number of holders

V141 The keys and combinations of the room are not changed on a

regular basis

V142 The doors and gates of the room are not kept closed at all times

V143 The windows of the room are not kept closed at all times

V144 Systems are not located such that access is controlled

V145 Controls for small computer users do not include cold-booting at
the start of each session if classified

79

V146 Diskettes are not write-protected when it is appropriate to do
so

V147 Users do not know they should not use personally owned computers
or systems at home for Air Force business

V148 Changes to software are not documented

V149 Access to utility software is not limited to specifically
identified personnel.

80

B-2 Progmm O&Vupt - FuMz Meshed (SO Sim~ple)

Results of Vulnerability Processing

Total number of Vulnerabilities Processed: 50

Statistical Results by Functional Area

VH H MH M ML L VL

Audit 0 0 0 2 5 14 29
Recovery 1 0 0 1 6 12 30
Access 3 4 6 4 5 18 10
Media 1 0 1 1 2 11 34
Operating Sys. 1 2 3 6 4 12 22
Configuration 0 0 4 6 7 14 19
Documentation 1 4 5 5 8 18 9

Significant Contributors to each Functional Area

Audit F125 F100 F101 F112 F131 F143 F148
Recovery F112 Fl10 P101 P125 F100 F131 F148 Flll
Access F101 F125 P142 F112 F106 F113 F143
Media F112 F106 F110 F125 Flll
Operating Sys. F101 F125 F115 F100 F124 F144
Configuration F142 F131 F143 F137 F101 F112 F125 F115

F148 F128
Documentation F127 F125 F142 F115 F143

Vulnerabilities Contributing to more than one Functional Area

Two Areas F100 F101 F106 F110 Flll F112 F115 F125
F131 F142 F143 F148

Three Areas F100 F101 F112 F115 F125 F131 F142 F143
F148

Four Areas F101 F112 F125 F143
Five Areas F101 F112 F125
Six Areas F125
Seven Areas F125

81

Vulnerabilities Rankings for Each Functional Area

Functional Area: AUDIT
Importance: M => F125 F100

Importance: ML F> F101 F112 F131 F143 F148

Importance. L ==> F122 F142 F115 F124 F144 F137 F141 F117
F133 F135 F118 F129 F134 F140

Importance: VL F> 7127 F106 F113 F108 F128 F132 F110 F136
F139 F105 Fill 7114 F119 F102 F109 F130
F107 F103 F138 F146 F104 F116 F120 F147
F123 F126 F145 F149 F121

Functional Area: RECOVER

Importance: VH ==> F112

Importance: M > F110

Importance: ML ==> Fi01 F125 F100 7131 F148 F111

Importance: L ==> F142 F115 F124 F143 F144 F117 F135 F102
F105 F103 F104 F140

Importance: VL F> 122 F127 F106 7113 F137 F141 F132 F133
F108 F128 F118 F129 F139 F109 F114 F119
F136 F107 F130 F138 F146 F116 F134 F121
F123 F126 F145 F149 F120 F147

Functional Area: ACCESS

Importance: VH ==> F101 F125 F142

Importance: H > F112 F106 F113 F143

Importance: MH ==> F115 F131 F144 F137 F141 F148

Importance: M => F100 F124 F117 F128

Importance: ML ==> F132 F135 F133 F118 F119

Importance: L ==> F122 F110 F108 F114 F129 F139 F105 F111
F136 F102 F130 F138 F140 F103 F104 F116
F134 F146

Importance: VL ==> F127 F109 F107 F121 F123 F145 F149 F120
F147 F126

82

Functional Area: MEDIA

Importance: VH ==> P112

Importance: MH F> F106

Importance: M ==> FII0

Importance: ML ==> F125 Fill

Importance: L ==> F100 F131 F108 F117 F135 F109 F102 F105
F119 F146 F107

Importance: VL ==> F101 F122 P127 F142 F113 F115 F124 F143
F144 F148 F137 P141 F128 F132 F133 F114
F118 F129 F136 F139 F104 F140 F130 F138
F103 F116 F134 F121 F123 F126 F120 F145
F147 F149

Functional Area: OS

Importance: VH > F101

Importance: H => F125 F115

Importance: MH F> P100 F124 F144

Importance: M ==> F122 F127 F142 F131 F143 F148

Importance: ML 1=> F12 F137 F141 F117

Importance: L ==> F106 F113 F128 F132 F133 F135 F109 F118
F129 F119 F139 F140

Importance: VL ==> F108 F110 F105 Fill F136 F102 F114 F130
F107 F138 F146 F103 F104 F116 F134 F120
F149 F126 F147 P123 F145 F121

Functional Area: CONFIGURATION

Importance: MH ==> F142 F131 F143 F137

Importance: M => P101 F112 F125 F115 F148 F128

Importance: ML ==> F100 F106 F113 F124 F141 F117 F135

Importance: L F=> P122 F144 F132 F133 F108 F110 F114 F118
F129 FPll F119 F139 F140 F130

Importance: VL ==> F127 F102 F105 F109 F136 F103 F104 F138
F146 F107 F116 F134 F126 F149 F120 F121
F123 F145 F147

83

Functional Area: DOCUMENTATION

Importance: VH F> F127

Importance: H F> F125 F142 F115 F143

Importance: MH => F101 F106 F131 F137 F148

Importance: M ==> F112 F100 F113 F141 F128

Importance: ML ==> F124 F144 F117 F132 F135 F133 F114 F129

Importance: L F> 122 F108 F110 F109 F118 Fill F119 F105
F136 F139 F104 F130 F138 F140 F107 Fl16
F134 F146

Importance: VL F1> F02 F103 F149 F120 F121 F123 F145 F147
F126

84

List of Vulnerabilities

F100 The system does not have audit trails.

F101 During logon, the system does not tell the user the date and
time the ID was last used

F102 Off-site backup does not exist for critical files

F103 Off-site storage is not a secure area

F104 Procedures have not been designed to insure only authorized
personnel have access to the storage media

F105 Storage media reserved for use by a contractor is not clear of
all classified or sensitive data

F106 External tape or disk identification labels do not include
security classification

F107 Media records are not kept.

F108 Inventory records do not show media on hand in the library

Fl09 Guidelines and controls have not been established to designate
an individual as disk manager for each computer system

F110 Backup is not available for power (generator or batteries)

Flll Backup is not available for air conditioning

F112 Backups of software for critical applications are not compared
to working copies to detect unauthorized changes.

F113 Security test and evaluation is not performed prior to
certification

F114 A contingency plan does not exist.

F115 System documentation does not include detailed information
concerning software use for the user

F116 Security documentation does not include configuration management
controls

F117 For PC (single-user) systems, files of different classifications
are not limited to authorized users

F118 Classification of software does not take into account algorithms
or processes that may be used

F119 Classification of media is not downgraded by reviewing all
information

F120 For periods processing the system does not use separate copies
of the operating system

F121 Protection of ADP magnetic storage media does not include
safeguarding media according to the highest classification ever
recorded

F122 The operating system does not automatically label all
human-readable output with its sensitivity

85

F123 Main memory and storage devices are not cleared before being
assigned to another individual or process.

F124 The operating system does not require users to identify
themselves before performing any actions

F125 The operating system does not use a protected mechanism (e.g.,
passwords) to authenticate user identity

F126 Testing is not performed to insure that there are no ways for an
unauthorized user to gain access to the system

F127 Documentation does not exist that describes operating system
protection mechanisms

F128 Documentation does not exist that outlines the test plan,
procedures and results for security testing

F129 A trusted facility manual does not include procedures for the
operator to operate the facility in a secure manner

F130 Passwords are not randomly generated

F131 The password administrator's responsibilities do not include
sole access to the password file

F132 Requirement(s) not met are that private data passwords are known
only by the creator

F133 Password management and control does not consist of a single
point of contact

F134 Audit trails for password distribution and change are not in
existence.

F135 Passwords are not changed at least every three months

F136 Compromised or mishandled passwords are not changed at least
within one working day

F137 Personal passwords are not deleted within three work days when a
user leaves the organization

F138 Group passwords are not changed within three work days when a
user leaves the organization.

F139 Resource protection measures do not include making personnel
responsible for protection of government property

F140 The keys and combinations of the room are not restricted to a
limited number of holders

F141 The keys and combinations of the room are not changed on a

regular basis

F142 The doors and gates of the room are not kept closed at all times

F143 The windows of the room are not kept closed at all times

F144 Systems are not located such that access is controlled

F145 Controls for small computer users do not include cold-booting at
the start of each session if classified

86

F146 Diskettes are not write-protected when it is appropriate to do
so

F147 Users do not know they should not use personally owned computers
or systems at home for Air Force business

F148 Changes to software are not documented

F149 Access to utility software is not limited to specifically
identified personnel.

87

Bibliography

Bacchus, Fahiem. Representing and Reasoning with Probabilistic Knowledge. Cambridge
MA: The MIT Press, 1990.

Bureau of the Census. Statistical Abstract of the United States 1992 (112th Edition).
Washington: GPO, 1993.

Carroll, John M. Managing Risk: A Computer-Aided Strategy. Boston, MA:
Butterworth Publishers, 1984.

Dempster, A. P. "Upper and Lower Probabilities Induced by Multivalued Mappings,"
Annals of Mathematical Statistics. 38:325-329. 1967.

Department of the Air Force (DAF). Air Force Systems Security Memorandum: Network
Risk Analysis Guide. AFSSM 5022. Washington: HQ USAF, 1 March 1993a.

Department of the Air Force (DAF). Air Force Systems Security Memorandum: Risk
AnaJsis. AFSSM 5018. Washington: HQ USAF, 1 February 1993b.

Department of the Air Force (DAF). Security: Computer Security Policy. AFR 205-16.
Washington: HQ USAF, 28 April 1989.

Dillard, R. A. Statistical Decision Making with Uncertain and Conflicting Data: Technical
Report 1451. San Diego: Naval Ocean Systems Center, September 1991 (AD-
A243853).

Dontas, Kejitan. An Implementation of the Collins-Michalski Core Theory of Plausible
Reasoning. MS Thesis (Draft). Knoxville, TN: Department of Computer Science,
University of Tennessee, September 1987.

Hoffman, Lance J. and Lee A. Neitzel. "Inexact Analysis of Risk," Proceedings of the
International Conference on Cybernetics and Society. 366-372. New York, NY:
Institute of Electrical and Electronics Engineers, 1980.

Kaufmann, Arnold and Madan M. Gupta. Introduction to Fuzzy Arithmetic: Theory and
Aplications. New York, NY: Van Nostrand Reinhold Company, 1985.

88

Giarratano, Joseph and Gary Riley. Expert Systems: Principles and Programming.
Boston: PWS-KENT Publishing Company, 1989.

Lukasiewicz, J. "Many-valued Systems of Propositioi . Logic," Polliks.Logi. Oxford
University Press, 1967.

Martin-Lof. "Constructive Mathematics and Computer Programming," Methodology and
Philosophy of Science IV. 153-175. Amsterdam: North Holland Publishing
Company, 1982.

McDermott, D. "A Temporal Logic for Reasoning about Plans and Actions," Cognitive
Science. 6:101-155. 1982.

Michalski, Ryszard S. Two-tiered Concept meaning. inferential matching and
cohesiveness. Invited paper for the Allerton Conference on Analogy and
Similarity, 1986.

Michalski, Ryszard S. and Patrick H. Winston. "Variable Precision Logic," Artificial
Intelligence. 29:121-146. 1986.

Nagy, T. J. and L. J. Hoffman. Exploratory Evaluation of the Accuracy of Linguistic vs.
Numeric Risk Assessment of Computer Security. Technical Report GWU-IIST-
81-07. Computer Security Research Group, The George Washington University.
May 1981.

Negoita, Constantin Virgil. Expert Systems and F Systems. Menlo Park CA: The
Benjamin/Cummings Publishing Company, Inc., 1985.

Oliver, R. M. and J. Q. Smith, eds. Influence Diagrams. Belief Nets and Decision
Analysis. Chichester, England: John Wiley & Sons, 1990.

Pearl, Judea. Probabilistic Reasoning in Intelligent Systems. Palo Alto: Morgan
Kaufmann, 1988.

Podell, Harold J. and Marshall D. Abrams. "A Computer Security Glossary for the
Advanced Practitioner," Computer Security Journal. Volume IV. Number 1. 69-
88. Northborough, MA: Computer Security Institute, 1986.

Quinlan, J. R. Inferno: A Cautious Approach to Uncertain Inference. RAND Note N-
1898-RC. Santa Monica: RAND Corporation, 1982.

89

Reiter, R. "Logic for Default Reasoning," Artificial Intellignce. 13:1-132. 1980.

Rich, Elaine and Kevin Knight. Arfial InllieWc (Second Edition). New York:
McGraw-Hill, Inc., 1991.

Sanchez, E. and Zadeh, L. A. ed. Approximate Reasoning in Intelligent Systems. Decision
and Control. Oxford, England: Pergamon Press, 1987.

Scheaffer, Richard L. and James T. McClave. Probability and Statistics for Engineers.
Boston, MA: Duxbury Press, 1986.

Schmucker, Kurt J. Fuzzy Sets. Natural Language Computations. and Risk Analysis.
Rockville MD: Computer Science Press, 1984.

Shafer, Glenn and Roger Logan. "Implementing Dempster's Rule for Hierarchical
Evidence," Artificial Intellign. 33(3):271-298. November 1987.

Trident Data Systems. Automated Risk Evaluation System (ARES) Maintenance Plan.
Technical plan to Air Force Cryptological Support Center, Kelly AFB, TX, 12
April 1993.

Wong, Kenneth K. Risk Analysis and Control. Oxford, England: NCC Publications,
1977.

Wood, Charles C. and others. Computer Security: A Comprehensive Controls Checklist.
New York, NY: John Wiley & Sons, 1987.

Yager, Ronald. "Using Approximate Reasoning to Represent Default Knowledge,"
Artificial Intelligence. 31:99-112. 1987.

Zadeh, Lofti A. "Fuzzy Sets," Information and Control. vol. 8. 338-353. New York NY:
Academic Press, 1965.

Zadeh, Lofti A. and Janusz Kacprzyk. ed. Fuzzy Logic for the Management of
Uncetain. New York, NY: John Wiley & Sons, Inc., 1992.

90

VITA

Captain Richard W. Fleming was born on 18 August 1963 in Odessa, Texas. He graduated from

Odessa Senior High School in Odessa, Texas in 1981 and enlisted in the U. S. Air Force that same

year. After serving a tour as a computer operations specialist, he applied and was selected for the

Airman's Education and Commissioning Program (AECP). He attend New Mexico State

University in Las Cruces, New Mexico and received his Bachelor of Science in Electrical

Engineering in May 1988. Upon graduation, he attend the Officer Training School, located at

Lackland AFB, Texas and received a reserve commission in the USAF. His first assignment

following commissioning was to Edwards AFB, California. There he served with the B-2

Combined Test Force (CTF) while on loan from the 6521 Range Squadron. He began as a

computer systems analyst where he designed, developed, tested, and evaluated hardware and

software systems for the B-2 flight test program. He was then chosen to serve as the branch chief

for the computer operations branch of the B-2 CTF. There he was responsible for insuring the

readiness and availability of real time computer support for the B-2 flight test missions. He served

in that position until entering the School of Engineering, Air Force Institute of Technology, in May

1992. Following completion of his Master in Computer Engineering Degree at AFIT, Captain

Fleming was assigned to the Information Systems Group, part of the Air Intelligence Agency,

located at Kelly AFB, Texas.
Permanent Address

Box 103
Goldsmith, TX 79741

91

I Form App'oived

REPORT DOCUMENTATION PAGE 0FB o 0704-0o18

P.~~cIi -ttiq Tý Pe nt-"i'i .ua '~ ng th~e time 'it r~viewtn instriuct.ns iiea, lýq existing 04ta iources,
q1tw-,1,'j Io AillM i. t m. tie-eal 3n, 0 e) 0 n It -f0 . nts reg"roreg Iths OU raen estre-tte In Vt)thef awfict Of this

~.,i~t 14,-, A I' K1- 2 3" toe 17 %1d3.rV. ~ 0 C .~ Ats ,glt 1 1- 20S03

1. AGENCY U2E ONLY (Leve ?biank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I December 1993 Master's Thesis
4 TITLE AND SUBTITLE 5. FUNDING NUMBERS

VULNERABILITY ASSESSMENT USING A FUZZY LOGIC BASED
METHOD

.6. AUTHOR(S)

Richard W. Fleming, Captain, USAF

I PERfORMING OR(iANIZATiON N-AME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GCE/ENG/93D-03

9. SPONSORING MONItORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING, MONITORING
AGENCY REPORT NUMBER

Air Force Cryptological Support Center
AFCSC/SROV
Kelly AFB, TX 78243-5000

11 SUPPLEMENTARY NOTES

12a DISTRIBUT!ON A'vAiLABtLTY STATEMENT 12b DISTRIBUTION CODE

Distribution Unlimited

13. ABSTRACT ',Vbimurn .00 wordi;)

This thesis demonstrates the feasibility of using qualitative analysis methods to evaluate computer security
vulnerabilities. Although many risk analysis systems exist, few provide for the adequate analysis of identified
vulnerabilities.
While the main focus of this thesis is to evaluate computer security vulnerabilities, the methods involved have
application in other areas requiring evaluation using qualitative methods. It is proposed, and demonstrated
by this thesis, that the use of qualitative analysis using linguistic variables to describe the impact of computer
security vulnerabilities is not only feasible, but intrinsically easier to understand and use than quantitative
methods.

14. SUBJECT TERMS 15. NUMBER OF PAGES

ARTIFICIAL INTELLIGENCE; VULNERABILITY ASSESSMENT; FUZZY 101
LOGIC; COMPUTER SECURITY 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-0' 280 5500 Standard Form 298 (RE. 2-89)

v'• lt j i,"2 ~ .

